

NSERC/Hydro-Québec Industrial Research Chair in Optimized Operation and Energy Efficiency: Towards High Performance Buildings Overview and Flexibility Applications - Varennes Netzero Library

Andreas Athienitis, FCAE, FIBPSA, FASHRAE

NSERC/Hydro-Québec Industrial Chair

Director, Concordia Centre for Zero Energy Building Studies (CZEBS)

Professor, BCEE Dept

IRC Research – 3 axes

- 1. Model predictive control and optimized responsive building operation;
- 2. Building flexibility for enhanced integration of distributed renewable energy resources and smart grid interaction
- 3. **Application case studies** that integrate the work of axes 1 and 2 in retrofit measures (including control strategies) for existing buildings.
- Predictive control methodologies and optimal operating strategies will be developed under Axis 1 to optimize interaction with smart grids, including peak shaving, cold load pickup after power outage, demand response implementation and integration of intermittent renewables.

PROJECTS

Axis 1: Model predictive control and optimized
responsive building operation

- **1.1** Development of grey box/data driven models of building zones and main HVAC components
- **1.2** Development of a methodology for design of model-predictive control (MPC) for buildings
- **1.3** Implementation and calibration of MPC, real time use of energy flexibility
- **1.4** Optimal operation of existing buildings based on calibrated strategies and retrofits

Axis 2: Building flexibility for enhanced integration of distributed renewable energy resources and smart grid interaction

- 2.1 Building design to support energy flexibility, including occupant behavior
- **2.2** Study of integration of semitransparent photovoltaics into building envelope and impact on demand profile
- 2.3 Comparison of different types of building-integrated storage and isolated storage charging/discharging options
- **2.4** Characterization of the impact of solar radiation fluctuations on building power demand in heating conditions
- **2.5** Methodology for addressing power demand variations due to short term solar radiation fluctuations

Axis 3: Application case studies

- **3.1** Application of MPC/optimal operation strategies to case study buildings
- **3.2** Application of energy efficiency and flexibility measures in conjunction with MPC
- **3.3** Optimal operating strategies for a smart grid-responsive NZEB
- **3.4** Energy and load management in school buildings

KEY RESEARCH FACILITIES

- Utilize building physics and data from buildings such as those monitored by Hydro Québec and the Experimentation Houses for Building Energetics (EHBE) develop a methodology for generation of reduced order models (ROMs).
- Validate models in SSEC facility.
- ROMs form the basis of predictive control strategies that utilize weather forecasting up to 3 days ahead, energy flexibility and models for occupant behavior.
- A methodology for generating and calibrating simplified ROMs appropriate for real time control (typically 3rd order).

Solar simulator SSEC facility

METHODOLOGY FOR PREDICTIVE CONTROL (JENNIFER)

- Model-based predictive control is studied as a strategy to reduce electricity bills for a bank building
- Numerical study based on two models of the building
 - A more detailed one for simulation
 - A simple one (control model) used in the optimization algorithm
- Implemented in Matlab/Simulink
- The objective function:

A near-optimal temperature setpoint schedule over a relatively short prediction horizon (e.g., 1-2 days).
 25% Reduction in Utility Cost

38% Reduction in Power Peak

Case study Varennes Library – Canada's first institutional solar NZEB

Market is ready for such projects provided standardized BIPV products are developed

Now modelling and optimizing operation and grid interaction under NSERC Hydro Quebec Chair

- 110 kW BIPV system (part BIPV/T)
- Geothermal system (30 ton)
- Radiant floor slab heating/cooling
- EV car charging
- Building received major awards (e.g. Canadian Consulting Engineering Award of excellence)

We played a key role in guiding energy design of the building

Varennes Library: living lab

Multi-Functional Library First Public Canadian Solar NZEB

Rendering just before final design; note skylights

EV

At a Glance

Net Floor Area: 2100 m² BIPV/T Roof: 110.5 kWp Solar Heat Recovery: 1142 L/s (pre-heated fresh air)

Thermal Storage

- 8x 150m geothermal boreholes
- Concrete slab, hydronic radiant

Other Passive Solar Design Features

- Natural cross-ventilation
- Exterior fixed solar shading

Window to wall ratios

North: 10% South: 30% East: 20% West: 30%

Building has become a living lab: photo from class visit

110 kWe BIPV (part BIPV/T)
Heat recovered on part of the array to supplement fresh air heating
38° slope, oriented South to South-East

LIBRARY SYSTEMS AND BIPV/T (PART OF ROOF)

- Custom BIPV/T, one inlet
- Fan activated for outlet air temperature >25°C
- Rated electrical efficiency:
 15.9% STC
- Combined efficiency up to ~60% (thermal + electrical)

Flexibility provided by: thermal mass in floor slabs, BIPV/T heat, geothermal

BIPV/T System (winter clear day performance)

Daily Fan Operation, Air Cavity & Outside Temperature (°C) vs. Time February

- BIPV/T fan activated for outlet air temperature >25°C
- Rated electrical efficiency: 15.9%
 STC
- Combined efficiency: ~60% (thermal and elec.)

electrical flexibility

Production and Consumption Mismatch:

use predictive control to reduce peak demand during cold days

e.g. measured data from sunny cold day Feb. 8, 2016

Grid-friendly NZEB?

Power

Smart NZEB can become tool of the grid through MPC

Harness energy flexibility

Vasken Dermardiros
PhD Student

Predictive control design for winter sunny cold day - near optimal setpoint profiles shown

Preheat during daytime the radiant slab to reduce two demand peaks; Electric grid utility will buy a maximum of 50 kW (net-metering)

Floor heating in perimeter zone Setpoint reduced by 2 C

T SETPOINT

- 3rd order thermal network model for perimeter zone with floor slab 15 cm. Proportional control of floor surface.
- Floor heating pipes in middle Cold day in Feb. -11 C average

Case study: EV building – hybrid ventilation and its predictive control

Concordia University (Montreal, Canada), EV building

Hybrid ventilation of an institutional building with high thermal mass

H. Vallianos

D. Qi

L. Wang

Active thermal storage reduced order models

- . Active PCM wall with airflow (Vasken, Tasos, Jennifer)
- 2. Thermelect high temperature storage in HVAC systems (Jen)
- 3. Floor heating/cooling (Ali)

Reduced order models to harness energy flexibility and for MPC

Development of theoretical transfer function models for different building and zone types

- Development of detailed theoretical frequency domain thermal network models.
- Distributed parameter elements employed to represent transient heat storage in building fabric layers.
- Models utilized to produce fundamental results on the frequency response characteristic of major transfer functions.
- 3rd order models found to be adequate for most purposes (e.g. MPC) validated in SSEC (see example below for convective heating).

$$\tilde{G}_{SG}(s) = \frac{2.27 \times 10^{-6} s^2 + 4.21 \times 10^{-10} s + 3.12 \times 10^{-14}}{s^3 + 4.17 \times 10^{-3} s^2 + 2.48 \times 10^{-7} s + 7.06 \times 10^{-13}} \left[\text{K/W} \right]$$

NSERC Smart Solar Buildings and Communities (SSBC) Strategic Research Network (2018-2024) www.solarbuildings.ca

Andreas Athienitis Liam O'Brien

Background - SNEBRN 26 top researchers from 12 Universities Building and energy industry leaders; key government partners – NRCan, Hydro Quebec, local distribution companies ALBERTA Lat 53° N Heating degree-days 5212 Legend UNIVERSITY OF CALGARY Photovoltaic potential (kWh/kW) South-Edmonton facing, tilt=latitude Annual 0 - 500 kWh/kW Vancouver 500 - 600 600 - 700 700 - 800 UNIVERSITY OF SASKATCHEWAN 800 - 900 900 - 1000

1000 - 1100

1100 - 1200

1200 - 1300

1300 - 1400

1400 +

Some important facts

- Most of Canada is quite sunny, with cold winters
- Ground temperatures 6-10 °C in most populated areas (lat 42-53° N)

DALHOUSIE

Concordia

Carleton Carleton

Halifax

ÉTS

Montreal

TORONTO

Lat 45° N Heating degree-days 4519

PV potential map of Canada with location of the 12 SSBC Universities

Waterloo University of

Partnerships

STRUCTURE®

it's what's inside

Commercial/Institutional Buildings: some trends

- Electric lighting: transformation in building design that moved towards <u>smaller window areas</u> until the 1950s;
- Followed by evolution to air-conditioned "glass towers" with <u>large window areas</u>: more daylight but higher cooling and heating requirements; now LED lighting;
- Currently: renewed interest in daylighting and natural/hybrid ventilation; eg hybrid ventilation system at Concordia EV building & predictive control (NSERC/HQ IRC);
- Building-integrated photovoltaics (BIPV), possibly with heat recovery (BIPV/T) or semitransparent PV windows (STPV);
- PV modules have dropped in price by 90% in last 10 years! Can be used as building envelope element! But BIPV products needed.

Fresh air Motorized inlets

John Molson School of Business building at Concordia: Novel BIPV/T system under **NSERC SBRN** network (2009)

Occupant behavior:

Note shade positions

IoT with smart sensors and machine learning can facilitate automation of shades

More R&D needed to make design of such systems routine; develop systems for retrofit

Smart Solar Buildings and Communities: The vision

- Integrated (electricity and thermal energy flows): at the building and at the community level
- Exploiting local renewable energy: BIPV, BIPV/T, STPV, solar thermal, seasonal heat storage with heat pumps
- Resilient: interconnected micro-networks where one part of the network can go down without affecting the rest; survive emergencies largely based on solar and geothermal energy; apply to infrastructure (e.g. bridges, tunnels, roads, public spaces); application to Arctic and remote communities
- Intelligent: Advances in sensors, information and communication technologies (e.g., IoT) and artificial intelligence offer opportunities to develop systems capable of auto-optimization, auto-learning, and autocorrection

Theme 1: Building integration of photovoltaics, active building envelope systems and HVAC

Co-leaders: Ian Beausoleil-Morrison (Carleton), Hua Ge (Concordia) C. Simonson, C. Cruickshank, M. Collins, Y. Chen, U. Berardi, T. Stathopoulos, N. Kherani, A. Athienitis

Partners: Canadian Solar, Unicel....

- BIPV: BIPV/T, semitransparent PV windows
- Active daylighting systems
- Solar thermal systems; integration with heat pumps and thermal storage
- Heat pump, HVAC and BIPV/T integration and optimization

Theme 2: Optimal operation of smart, comfortable and energy-flexible buildings

Co-leaders: Alan Fung (Ryerson) and Jose Candanedo (NRCan) W. O'Brien, R. Zmeureanu, M. Kummert, B. Gunay, A. Athienitis **Partners:** Canmet, Regulvar, HQ....

- Smart building with occupant-centric control strategies
- Model-based controls
- Forecasting and predictive controls at the zone and single building level
- Building energy flexibility and grid interaction

```
\label{eq:subject} \begin{split} & \underset{U,X}{\text{minimize}} & & f(U) \\ & \text{subject to} & & X = \Omega x(0) + \Phi U + \Psi W, \\ & & & Y_{i,min} \leq Y_i \leq Y_{i,max}, \\ & & & U_{i,min} \leq U_i \leq U_{i,max}, \quad \sum_{i=1}^3 U_i \leq Cap, \end{split}
```


Theme 3: Community energy systems that optimize utilization of distributed renewable energy sources

Co-leaders: Michel Bernier (Polytechnique) and Jim Cotton (McMaster) M. Lightstone, L. Swan, S. Bucking, P. Pillay, B. Kankar Partners: Canmet, HQ

- Community level design of thermal and electrical storage; energy flexibility
- Islanded operation during emergencies such as ice-storm '98
- Multi-building interactions and optimization
- Seasonal energy storage; apply to infrastructure and public spaces
- Community level energy management apply AI to develop selfadaptive optimal strategies; integrate building level models, reduced order community models
- Application to northern and remote communities

Theme 4: Integrated building/community modelling, design and operation, input to national policy

Co-leaders: Michaël Kummert (Polytechnique) and Andreas Athienitis (Concordia) L. Wang, K. Bhattacharya, P. Pillay, T. Stathopoulos, C. Hachem-Vermette Partners: s2e, Canadian Solar, Municipalities, CHBA, CMHC, CanmetENERGY

- Promising clean energy and smart technologies and their integration will be studied to provide input to national policies – e.g. potential towards GHG reduction until 2050 while achieving energy resilience;
- Occupant behavior models and renewable energy incentive measures to optimize the demand and renewable energy generation profiles from communities/building clusters;
- Study of long-term built environment solar design strategies for deep reductions in GHG emissions and resilience;
- Techniques such as predictive control based on weather forecasting and energy flexibility applied on a large scale to aid community planning; integration of Evs.

Towards smart high performance resilient buildings

BUILDING SYSTEMS	CURRENT BUILDINGS	FUTURE SMART BUILDINGS
Building fabric	Passive, not designed as an energy system	Optimized for passive design and integration of active solar systems
Heating & Cooling	Large oversized systems	Small systems optimally controlled; integrated with solar, CHP; Communities: seasonal storage and district energy; smart microgrid, EVs
Solar systems	No systematic integration – an after thought	Fully integrated: daylighting, solar thermal, PV, hybrid solar, geothermal systems, biofuels
Building operation	Building automation systems not used effectively	Predictive control to harness energy flexibility; online demand prediction; grid-friendly.
Integration with design	Operating strategies not optimized with design	Integrated design that considers optimized operation; optimize form and basic features in early design

Smart community