

A Biomass System Perspective Framework for a net zero future

As part of the Biomass and Carbon Neutrality project

Host Laure-Anne Douxchamps, research associate at the IET **Presentation** Roberta Dagher, research associate at the IET

About the Institut de l'énergie Trottier

Created in 2013 with funding from the Trottier Family Foundation, support renewed in 2023

Mission

Mobilising science and governance to help catalyse the transition towards low-carbon Canadian energy systems

- Analysis and guidance Help design solutions to energy challenges, guide public policy and support key players in implementing solutions
- Education and research Mobilize expertise, share knowledge and develop know-how
- **Communication** Explain the issues at stake, make people understand the urgent need for action and highlight solutions

Projects

- **Canadian Energy Outlook :** project describing and analyzing the transformations required in order to meet net-zero objectives in Canada
- Managing peak electricity demand and improving resilience in an increasingly electrified world
- Co-direct, with IESVic and the University of Calgary, the Energy Modeling Hub, a pan-Canadian organization that develops, maintains and makes available energy models, and brings together public decisionmakers and the energy modeling community.

Biomass and carbon neutrality project

This project was led and conducted by the Institut de l'énergie Trottier with the support of the Transition Accelerator (TA).

The Institut de l'énergie Trottier

The IET was created in 2013 thanks to an exceptional donation from the Trottier Family Foundation to Polytechnique Montréal. Since then, it has been involved in every energy debate in the country.

At the source of major collective reflections, its team mobilizes knowledge, analyzes data, popularizes issues and recommends fair and effective plans, simultaneously contributing to academic research and training.

The Transition Accelerator

The Transition Accelerator is designed to support Canada's transition to a net zero future while solving societal challenges. The Accelerator works with innovative groups to create visions of what a socially and economically desirable net zero future will look like and build out transition pathways that will enable Canada to reach it.

The four-step approach of the Accelerator is to understand, codevelop, analyze and advance credible and compelling transition pathways capable of achieving societal and economic objectives, including driving the country towards net zero greenhouse gas emissions by 2050.

Funding

To support the mandate of Canada's Net-Zero Advisory Body related to research, this project was undertaken with the financial support of the Government of Canada. Funding was provided through the Environmental Damages Funds' Climate Action and Awareness Fund, administered by Environment and Climate Change Canada. The Institut de l'énergie Trottier and the Transition Accelerator also contributed to this project.

This project was undertaken with the financial support of the Government of Canada. Ce projet a été réalisé avec l'appui financier du gouvernement du Canada.

Report authors

Roberta Dagher (*lead author*), Research Associate at the IET and TA **Louis Beaumier**, Executive director, IET **Normand Mousseau**, Scientific Director, IET; Transition Pathway Principal, TA

BSP tool development team

Design, Research and Implementation

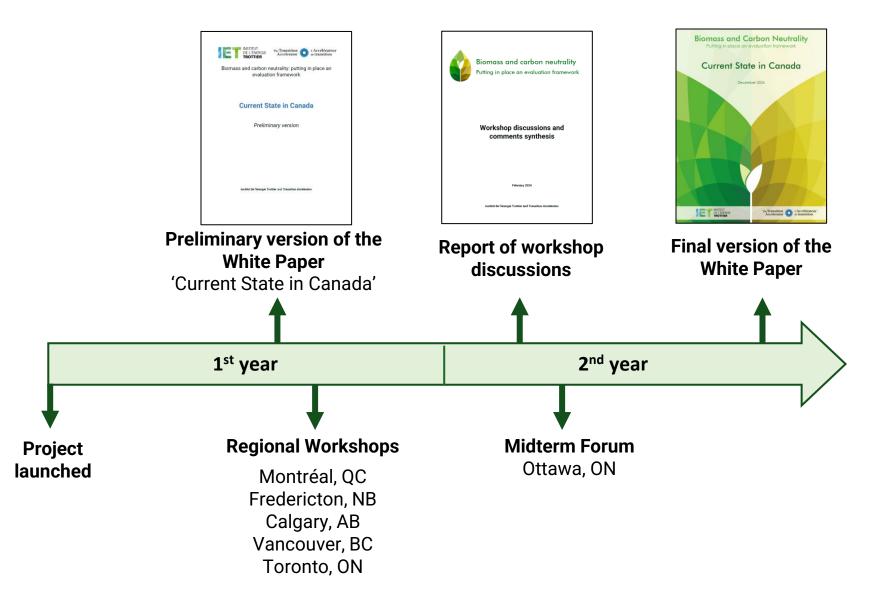
Roberta Dagher (*lead researcher*), Research Associate, IET Louis Beaumier, Executive director, IET Frédérik Lavictoire, Intern, IET

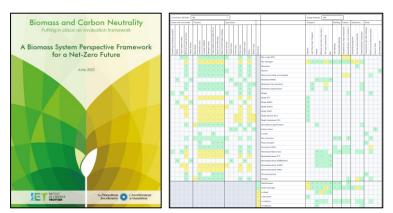
Interface development

🗘 kashika studio

Acknowledgements

Collaborators, external revisors and participants that contributed at different phases


The Simpson Centre and University of New Brunswick helped organize workshops in Calgary and Fredericton, and the Pacific Institute for Climate Solutions helped moderating the discussion tables in Vancouver.


J. Harvey Consultant & Associés Inc., ESMIA Consultants and Joseph Lefèvre helped enrich the data analysis.

Several stakeholders and experts contributed to this project either by participating in discussions (during workshops, forum and in other meetings) or/and by reviewing the project reports and sharing their comments and suggestions for this project.

The list of persons who participated to the workshops or/and reviewed the reports are available in the published documents.

Project phases

- Final report proposing an evaluation framework for biomass uses
- First version of a decision-support tool

All project reports are available here: https://iet.polymtl.ca/en/biomass-and-carbon-neutrality/results

What we'll talk about today

An overview on biomass in Canada's path to net zero

- Impact of biomass use in terms of climate change mitigation
- Biogenic emissions tracking in Canada's inventory
- Types of existing evaluation methods for biomass

Putting in place an evaluation framework

- Proposed approach
- The Biomass System Perspective decision-support tool
- Recommendations

Part 1: An overview on biomass in Canada's path to net zero

The first part of the report is dedicated to present an overview of studies and methods used to analyze, track or evaluate biomass uses.

To develop an evaluation framework for biomass, we need to address the **factors that make bioenergy unique** among other types of renewable energy and **that are crucial to understanding the impact of choices** we make when developing new projects aimed at using these resources for bioenergy or non-energy purposes.

Impact of biomass use in terms of climate change mitigation

Although biomass use for bioenergy is often assumed to be carbon neutral, **biomass resources and their end**uses are diverse and disparate in terms of their environmental impact.

Biomass use **can contribute to climate change mitigation** under different circumstances that **depend on many factors**, including:

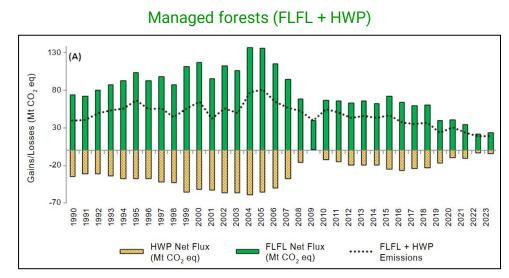
- Biomass type as well as location of harvest and its fate in alternative scenario
- Types of bioproducts and their corresponding biomass conversion efficiency and their lifecycle emissions
- Types of fossil fuels and products that we intend to substitute in the end-use applications and their lifecycle emissions

Mitigation benefit = cumulative GHG emissions from biomass use **are lower** than from fossil alternatives on a certain timescale (*due to subsequent C sequestration in forest in the case of bioenergy*)

Mitigation benefits from biomass use occur **over a certain timescale**. To evaluate whether biomass use is providing mitigation benefits, the timescale considered must be defined.

How are biogenic emissions accounted for in Canada's inventory and what is the current state of emissions?

- Removals and emissions are reported differently for forestry and agricultural biomass in national inventories.
- Biogenic CO₂ emissions from forest biomass combustion for bioenergy are included in Canada's national inventory report (NIR) in the LULUCF category.
- The assumption of carbon neutrality in the inventory applies only to annual biomass.

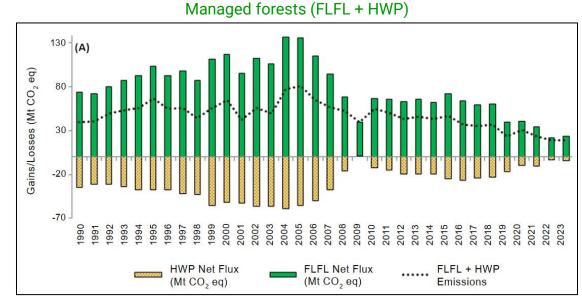

Biogenic CO₂ from combustion
For annual biomass (e.g., corn crops): not reported
For forest biomass (e.g., wood chips): reported within the LULUCF sector
Non-CO₂ biogenic emissions (CH₄ and N₂O)
Reported in energy and waste sectors

• The IPCC requires complete coverage of all IPCC sectors, including AFOLU and Energy, which together, include the emissions (CO₂ and other GHG) from **biomass used for energy purposes at the national level**.

Managed forests

- The sum of removals, emissions and carbon transfers reported in the Forest Land and in the Harvested Wood Products (HWP) categories represent the net annual flux of carbon of the managed forests.
- If carbon removals in Canada's managed forests remained higher than its carbon emissions, including carbon emissions from combustion or decomposition of wood products in a given year, forests would be a carbon sink.
- However, in all the time series, forests were classified as a carbon source.

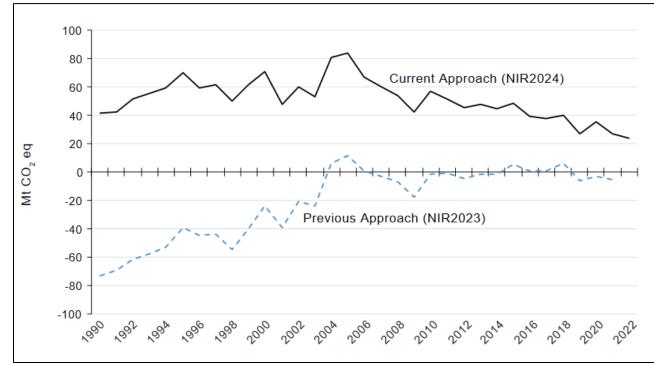
	Net GHG Flux (Mt CO ₂ e)								
Sectoral category	1990	2005	2018	2019	2020	2021	2022	2023	
Forest land (anthropogenic component)	73	140	60	40	40	34	22	24	
Harvested Wood Products	-38	-57	-24	-18	-10	-12	-4	-5.1	
Cropland	5.5	-20	-20	-15	-13	-16	25	-22	
Grassland	0	0	0	0	0	0	0	0	
Wetlands	5.1	2.7	2.5	2.7	2.9	2.8	2.6	2.6	
Settlements	4.8	4.7	5.4	5.3	5.3	5.5	5.2	5	
LULUCF total (reported)	50	66	24	15	25	15	51	4	
Natural disturbances in managed forests (tracked but not reported)	-120	12	250	160	2.7	290	87	1 100	


FLFL: Forest Land Remaining Forest Land

Managed forests

Emissions in the HWP category in 2023:

- 33% from long-lived wood products (e.g. sawn wood used in construction that reaches the end of its useful life)
- 25% from short-lived products (e.g. pulp and paper)
- 39% from bioenergy


Reporting in the HWP category now represents (since the 2025's NIR) the **difference between annual carbon inputs to the HWP pool** (as carbon gain) **and the annual emissions** originating from the disposal or from combustion of wood products.

Revisions in Canada's NIR of 2024

- Recalculations were made in Canada's national inventory report of 2024 for the LULUCF sector, which had a significant impact on estimated emissions, mainly due to a review of the historical harvest areas.
- These corrections shifted the LULUCF sector from a net carbon sink to a net carbon source through the entire inventory time series.

Emissions of Managed Forests combining Forest Land and Harvested Wood Products (HWP) in Canada's NIR of 2024 compared to the previous approach

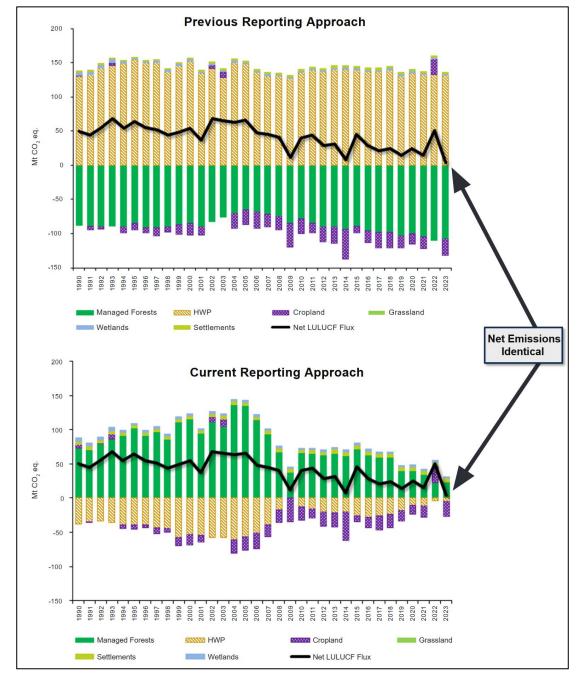
Revisions in Canada's NIR of 2025

Major revisions to Canada's reporting approach for the LULUCF sector were also made in the 2025 NIR.

Reporting in the Forest Land category:

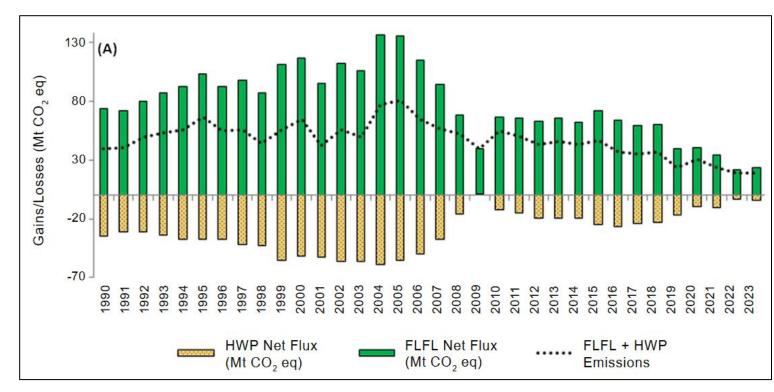
In the 2025 NIR: now includes the fluxes of carbon of wood products out of the forest ecosystem (as carbon loss) which is then transferred to the HWP pool (as carbon gain).

Before the 2025 NIR: it previously included only CO_2 removals from the atmosphere and the emissions from decomposition of biomass in the forest ecosystem.


Reporting in the HWP category:

In the 2025 NIR: represents the difference between annual carbon inputs to the HWP pool (as carbon gain) and the annual emissions originating from the disposal or from combustion of wood products.

Before the 2025 NIR: it previously reported only the annual gross emissions from the disposal or from combustion of HWP


Revisions in Canada's NIR of 2025

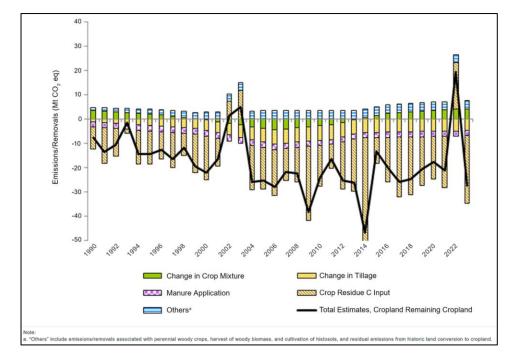
- The changes flipped the Forest Land category from a net sink to a net source, while they simultaneously flipped the HWP category from a gross emission source to being reported as a net gain of carbon storage.
- Despite the significant changes done in the reporting categories, the net emissions of the forest sector did not change* in the 2025 NIR.
- The objective of these revisions according to the NIR, were to improve the comparability of Canada's HWP reporting with other countries, to better capture the immediate impact of harvest on carbon stocks and the important role of HWP as a global carbon store.

See report section 1.4

Canada's NIR of 2025

Managed forests (FLFL + HWP)

« Emissions and removals reported from the forest sector, without the natural disturbance component but also considering fluxes of carbon to the Harvested Wood Products category, **demonstrate that the Canadian Forest sector acts as a net source of carbon** transferred to the atmosphere and to the global waste stream **as a result of shortand long-term impacts of human management** ».


(Citation from Canada's NIR, Government of Canada, 2025)

Tracking biogenic CO₂ in Canada's inventory

Croplands

- Emissions and removals are impacted by the input of organic C in mineral soils.
- Crop residues contribute to carbon removals in croplands through carbon input to agricultural soils. This contribution has the highest impact on emissions declared in this sector.
- In Canada's NIR, croplands have been a net carbon sink in almost all the time series. However, exceptionally in 2022, they were a net source of emissions of 25 Mt, which was associated with the 2021 drought in Western Canada (Government of Canada 2025).
- Weather variations and drought events have a huge impact on crop yields and carbon inputs to soils and, accordingly, on emissions from croplands.

Emissions reported in Canada's 2025 NIR for Croplands remaining Croplands

Methodology used for the LULUCF in national targets accounting

When tracking Canada's progress towards its national targets:

- An "accounting contribution" value is calculated for the LULUCF sector and then added to Canada's total net GHG emissions.
- The "accounting contribution" of LULUCF **is not equivalent** to the total emissions of the LULUCF sector reported in the national inventory report.

To estimate the accounting contribution from LULUCF:

- A "reference level" accounting methodology is used for managed forests: emissions reductions from managed forests are calculated as the difference between forest emissions in the reporting year and the estimated emissions for that same year that would occur if past management practices continued business-as-usual.
- A "net-net" approach is used for the rest of the LULUCF categories: comparing emissions of the reporting year to a base year (2005).

Therefore, in 2022, the accounting contribution from LULUCF was +12 Mt CO_2e while the net emissions in LULUCF sector reported in the national inventory were +51 Mt CO_2e .

Methodology used for the LULUCF in national targets accounting

- In 2022, total GHG emissions of Canada (excluding LULUCF) were 708 Mt CO₂e. By adding the LULUCF accounting contribution (+12 Mt for 2022), Canada's GHG emissions were 720 Mt CO₂e.
- The "accounting contribution" from LULUCF is expected to remain a credit of around -30 Mt CO₂e to Canada's GHG emissions until 2040.
- As for **the net emissions of the LULUCF sector**, Canada's most recent projections (published in February 2025) show a decrease in emissions to reach negative emissions starting from 2023.

LULUCF sector				Projected GHG flux (Mt CO2e)					
	2021	2022	2023	2023	2025	2030	2035	2040	
Net GHG flux	+14 ^{a, b, c}	+51 ^{a, b, c}	+4.2 ª	-12 °	-4 ^{b, c}	-18 ^{b, c}	-25 ^{b, c}	-23 ^{b, c}	
Accounting contribution	-29 b, c	+12 ^{b, c}	NA	-44 °	-29 b, c	-28 b, c	-31 ^{b, c}	-30 b, c	

Historical and projected LULUCF net GHG flux and accounting contribution

^a Published in Canada's national inventory report of 2025

^b Published in Canada's first Biennial Transparency Report on 30 December 2024

^c Datasets from Canada's current projections published in February 2025 on the website of ECCC

^d Some values differ by 1 or 2 Mt CO₂e from one reference to another. For clarity of information presented in the table, only one value is presented.

Climate change impact on C stocks

Climate change is already affecting biogenic carbon stocks in Canada

Manitoba declares state of emergency as wildfires rage, forcing evacuations

TEMUR DURRANI > INCLUDES CORRECTION WINNIPEG PUBLISHED MAY 28, 2025 UPDATED MAY 30, 2025

Smoke rises from a wildfire in Flin Flon, Man., on May 27, 2025. MANITOBA GOVERNMENT/REUTERS

Science

This could be Canada's 2nd-worst wildfire season

Fire danger greatest in southern B.C. in July, according to federal officials

Nick Murray - The Canadian Press - Posted: Jun 12, 2025 2:43 PM EDT | Last Updated: June 12

Smoke rises from the Summit Lake wildfire, west of Fort Nelson, B.C., on June 3. Federal officials say this season is on track to become Canada's second-worst wildfire season. (BC Wildfire/Reuters)

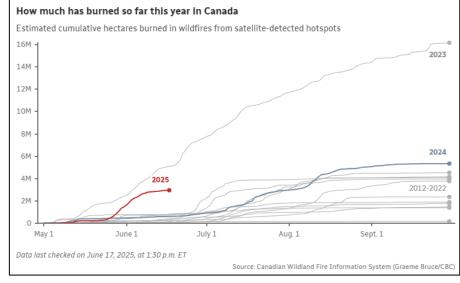
Sources:

https://www.cbc.ca/news/canada/saskatchewan/saskatchewan-first-nations-wildfires-state-of-emergency-1.7546571 https://www.theglobeandmail.com/canada/article-manitoba-declares-state-of-emergency-as-wildfires-rage-forcing/ https://www.cbc.ca/news/science/fire-season-2025-1.7559565

Climate change impact on C stocks

- Canada's 2023 fire season was extreme compared to all other fire seasons in its recent history.
- From May to July 2023, wildfires burned 15 million hectares, compared to a nationwide annual average of 2.5 million hectares.
- Researchers showed that climate change significantly **increased the likelihood** of the long fire season and the large area burned in most regions of Canada in 2023.
- A study on the 2023 fire season in Eastern Canada showed that peak fire weather like that experienced in 2023 is at least twice as likely to occur today compared to under preindustrial climate.
- The **intensity of fires** has increased by some 20% due to human-induced climate change. In Quebec, climate change led to fires being 50% more intense at the end of July 2023 relative to the pre-industrial climate.

nature > npj climate and atmospheric science > articles > article


Article Open access Published: 20 December 2024

Human driven climate change increased the likelihood of the 2023 record area burned in Canada

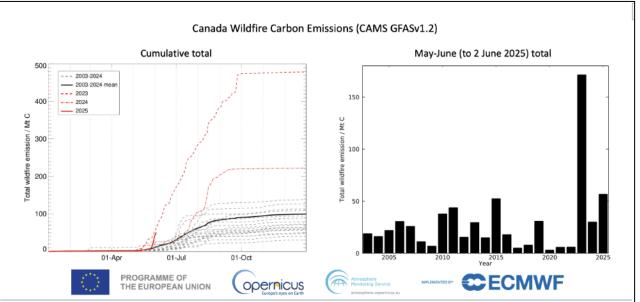
<u>Megan C. Kirchmeier-Young</u> [⊠], <u>Elizaveta Malinina, Quinn E. Barber, Karen Garcia Perdomo, Salvatore R.</u> <u>Curasi, Yongxiao Liang, Piyush Jain, Nathan P. Gillett, Marc-André Parisien, Alex J. Cannon, Aranildo R.</u> <u>Lima, Vivek K. Arora, Yan Boulanger, Joe R. Melton, Laura Van Vliet & Xuebin Zhang</u>

npj Climate and Atmospheric Science 7, Article number: 316 (2024) Cite this article

8987 Accesses | 48 Altmetric | Metrics

Source: https://www.cbc.ca/news/science/fire-season-2025-1.7559565

Sources: Barnes, C. et al. 2023. Climate change more than doubled the likelihood of extreme fire weather conditions in Eastern Canada. Imperial London College pages 1-26. Kirchmeier-Young, M.C., Malinina, E., Barber, Q.E. et al. Human driven climate change increased the likelihood of the 2023 record area burned in Canada. *npj Clim Atmos Sci* **7**, 316 (2024). https://www.worldweatherattribution.org/climate-change-more-than-doubled-the-likelihood-of-extreme-fire-weather-conditions-in-eastern-canada/


Climate change impact on C stocks

In 2023: total emissions from natural disturbances* in managed forests reached a total of 1100 Mt CO_2e , around 150% higher than the total GHG emissions in Canada.

In 2025: according to data from the CAMS Global Fire Assimilation System (GFAS), the total estimated fire emissions for Canada **are second only to 2023 up until 2 June 2025**.

	Net GHG Flux (Mt CO ₂ e)							
	1990	2005	2018	2019	2020	2021	2022	2023
LULUCF total (reported)	50	66	24	15	25	15	51	4
Natural disturbances (tracked but not reported)	-120	12	250	160	2.7	290	87	1 100

Note * Natural disturbances component include lands impacted by both Wildfire and insect disturbance. Source: Government of Canada 2025

CAMS GFASv1.2 daily total fire radiative power (left) in May, comparing 2025 (in red) with the 2003-2024 mean (in grey) and the years 2023 and 2024 (dashed and dot-dashed red lines) and total estimated carbon emissions (right) for Canada in May. The year 2025 has seen the second highest emissions up to 1 June in the dataset going back to 2003. Source: CAMS

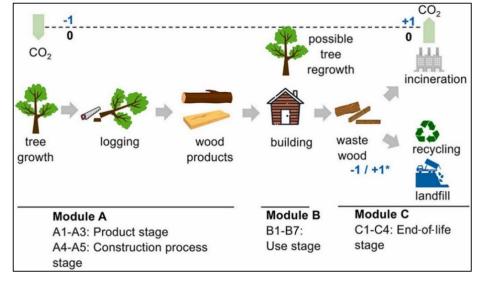
Source: https://atmosphere.copernicus.eu/cams-tracks-smoke-intense-canadian-wildfires-reaching-europe

Current evaluation methods for biomass

Researchers, project developers, policymakers and international standards committees have developed various methods to evaluate biomass uses for bioenergy or biomaterials, depending on the scope of the study and the objective of the evaluation.

In the final report, the main objective was to explore methods that are currently deployed to assess biomass use in a context of Canada's transition to net zero.

We thus focused on methods that included in the evaluation the impact on GHG emissions.

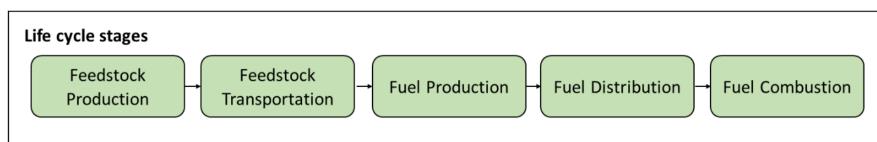

Existing methods are categorized as follows:

- Sustainability criteria and standards;
- Climate mitigation benefit assessment: Project scale vs regional scale;
- Decision making support tools: Resource focused vs End-use focused.

Project scale vs regional scale

On a project scale

- To evaluate the benefits of a biomass project on GHG emissions, life-cycle assessments (LCA) are often conducted to determine these emissions at all stages of the life cycle of a bioproduct.
- Bioproducts can be biochemicals, biomaterials or biofuels.
- In the case of biomass use for biomaterials such as wood use in buildings, LCA can be conducted for a certain product (e.g., a mass timber floor panel) or for an entire building, depending on the scope and objective of the evaluation.
- Biogenic CO₂ can be either included or excluded in LCA assessments of bioproducts depending on the objective and the scope of the analysis.



Source: Ouellet-Plamondon et al. 2023

Life cycle stages used for a wood building assessment

On a project scale

- The carbon intensity (CI) of the biofuel produced is also determined through LCA methodology.
- Different models for CI calculations have been developed in Canada and abroad (e.g., Fuel LCA Model used in Canada to determine the CI of fuels for GHG policies and programs).
- The purpose of CI values is to quantify all emissions released during the life cycle of the fuel produced, from feedstock preparation and transport to combustion.
- CI values are specific to each project.
- LCA models that are used for biofuel CI calculations in Canada do not account for biogenic CO₂ emitted by the combustion of biofuels in order to be consistent with the Government of Canada's policy on biogenic carbon and the guidelines of the national GHG inventories.

Life cycle stages used for biofuels

On a project scale

By determining the life cycle GHG emissions (carbon intensity) of biofuels or biomaterials, it is then possible to
estimate the relative GHG savings that would occur if using these bioproducts to substitute higher carbon
intensive products and fossil fuels.

Bioenergy projects in Canada	Environmental benefit as announced
Biomethanol project by Varennes Carbon	Carbon intensity of biofuel not mentioned.
Recycling (QC)	Yearly GHG emissions reductions of 170 kt CO_2e with a yearly production of 125
(project was suspended in 2025)	million litres of biofuels.
RNG project from agricultural waste by	Carbon intensity of biofuel not mentioned.
Nature Energy (QC)	Yearly GHG emissions reductions of 60 kt CO ₂ e with a yearly production of 20 million cubic meters RNG.
RNG project by G4 Insights (BC)	GHG emissions reductions of 712.8 kt CO_2 over the project's design life. It is
(produced from wood)	assumed to be used in transport as compressed natural gas (CNG).
	Carbon intensity of produced RNG: 14.3 g CO_2/MJ , which is compared to a carbon intensity of 95.86 g CO_2/MJ of gasoline.

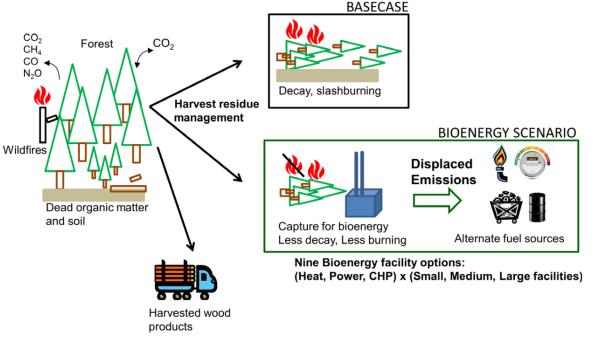
Example of environmental benefits published for bioenergy projects

Sources: Énergir Développement Inc. 2025; Enerkem 2025; G4 Insights Inc. 2015

 The approved CI of biomass projects under the CFR were published in 2024 for organizations that agreed to be included in the publication. Among the published CI data, a lot of information (e.g., name of the installation, type of boundaries used, value of the approved CI) was noted as confidential in the publication, thus constituting a barrier for tracking the CI of existing and new projects in Canada.

On a project scale

Limitations in the context of net zero transition

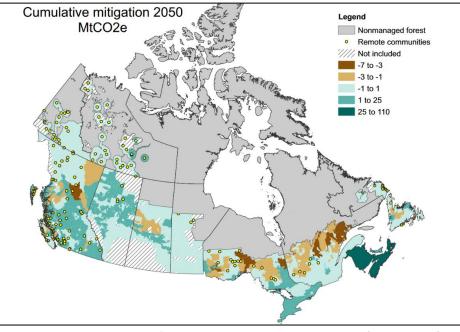

- Using CI values in GHG reduction programs and policies favours the production of bioproducts with lower fossil GHG emissions in the supply chain.
- There are limits to the CI values currently used (e.g., for determining whether local resources are used efficiently and considering the emissions of biogenic CO₂ from biomass combustion).
- Additional information is needed to estimate the full impact on emissions of developing a new project that aims to use biomass resources.

On a regional scale

To evaluate the climate change mitigation potential of using biomass for bioenergy or other uses on a national or regional scale, many studies conducted for the forest sector used a "system approach" to quantify net emissions relative to a forward-looking baseline **and by including biogenic CO₂ emissions**.

More specifically, this approach combines the emissions and removals from three system components described below to determine whether biomass use has a climate mitigation benefit over a certain timescale.

- (1) Forest ecosystems: includes all emissions and removals in the forest ecosystem (e.g., from tree growth, residues decay).
- (2) Harvested Wood Products: includes biogenic emissions from combustion or decay from all harvested wood that is sent to markets as wood products, bioenergy or residual biomass.
- (3) Displaced emissions: includes avoided GHG emissions from the substitution of fossil fuels by bioproducts.


On a regional scale

Examples of studies that applied a similar methodology for analysis on a national, provincial or local level are presented in the report.

Main takeaways from regional scale studies

- It is possible to obtain either positive or negative impact on climate mitigation potential by using biomass resources for different bioenergy and bioproduct scenarios.
- Climate mitigation benefit is determined for a certain timescale (e.g., annual or cumulative until 2050).
- Obtaining a positive or negative climate mitigation impact from bioenergy production was found to be location dependent across Canada, even when using the same types of biomass that are considered "residues".
- Results depend on many factors (e.g., landscape considered, current energy mix used, quantity of residues used, types of wood products sent to market).

Average cumulative climate change mitigation potential of using logging residues for bioenergy in Canada from 2017 to 2050

Source: Smyth, C et al. 2017. "Climate Change Mitigation Potential of Local Use of Harvest Residues for Bioenergy in Canada." GCB Bioenergy 9(4):817–32.

Part 2: Putting in place an evaluation framework

Main observations

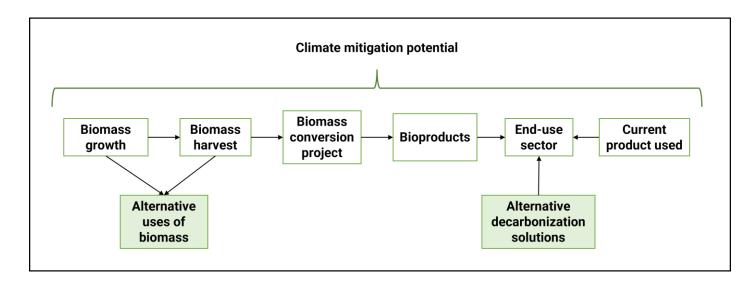
Resource-focused or end-use focused evaluation approaches

No decision-support tool with a systemic view that integrates challenges and opportunities from both the supply and the demand perspective is currently available.

• Multi-sectoral impact and interdependency of biomass industries

The climate mitigation benefit of biomass **depends on the decisions made at each step of this value chain**, starting with ecosystem management and biomass harvesting, through to conversion processes and disposal.

Project and system-level perspectives


A system-level evaluation would allow for the consideration of a fate other than the proposed bioproduct for the biomass resource and alternative solutions for decarbonizing the end-use for which the bioproduct was intended. Adopting such a biomass system perspective shifts the focus from fuel decarbonization to end-use decarbonization.

Concept of the proposed framework

In order to evaluate a project aimed at using biomass resources for energy or non-energy purposes in a context of transition to net zero, the following three questions need to be taken into consideration:

- 1. What are the **alternative uses** for the available resources and the trade-offs for the project?
- 2. What is the project's contribution to end-use sector decarbonization and how does it compare to **alternative solutions**?
- 3. What is the project's impact on **climate change mitigation**?

To answer these questions, **indicators are needed from both the supply and the demand side** in order to make an informed decision on the best way to allocate biomass resources to different projects in a net-zero future.

Concept of the proposed framework

Identifying and comparing alternatives

On the supply side, alternatives to the proposed project for biomass use need to be identified.

These alternatives can be business as usual (e.g., leave residues in forest, dispose in landfills, use for nonenergetic purposes, etc.) or an alternative conversion project. Viable alternatives should be selected based on the local context since biomass availability and conditions necessary for project development differ from region to region.

On the end-use/demand side, alternative decarbonization solutions must be identified for the sector under consideration. The benefits of the bioproduct must be compared not only to the fossil fuel it would displace, but also to the alternative choices that are compatible with a net-zero future.

After identifying relevant alternatives for biomass use and end-use sector decarbonization, the impact of these different choices must be compared, based on a variety of environmental, economic and social indicators.

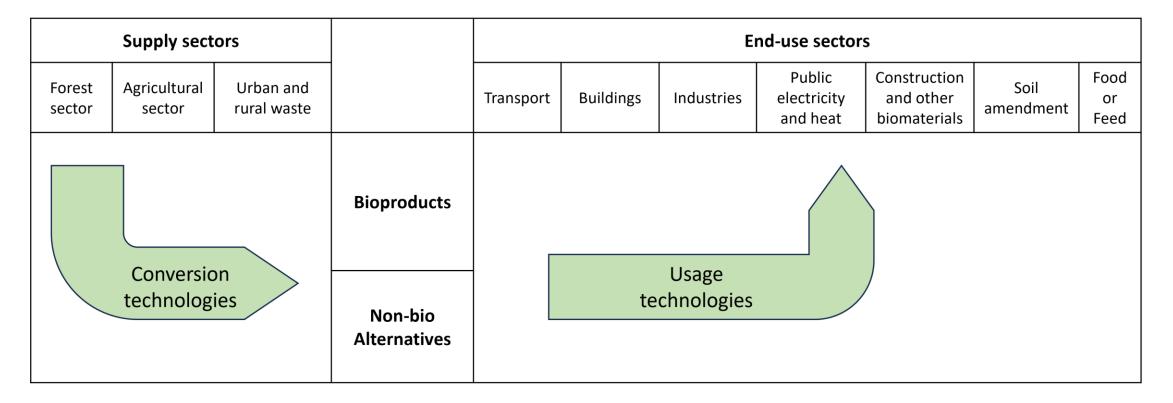
Concept of the proposed framework

Impact on climate mitigation potential

Evaluating the impact of a new biomass conversion project on climate change mitigation cannot be straightforward because of the dynamics of biogenic carbon.

The methodology researchers use to evaluate the impact of various biomass uses depends on the scale of the analysis (project vs regional).

For comparison purposes, various indicators can be used to identify projects that could potentially lead to a better carbon balance.

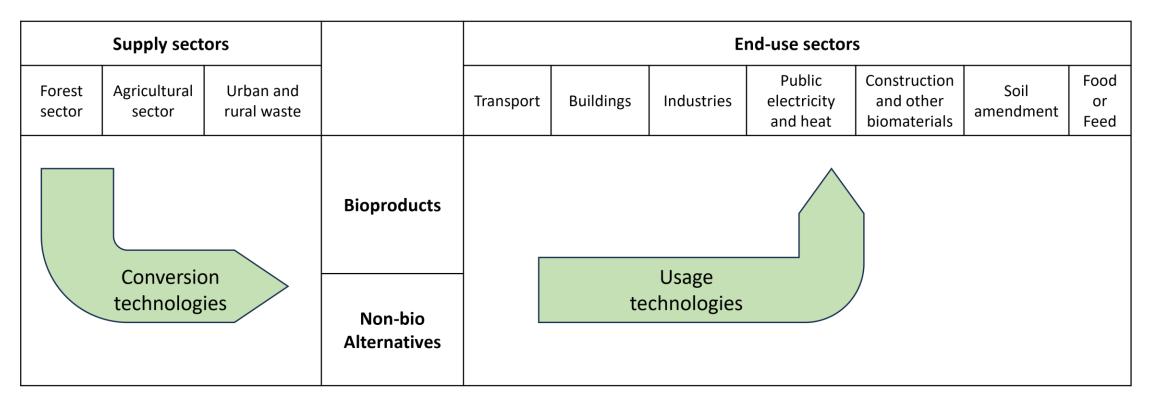

For example, by having a higher conversion efficiency, by substituting higher carbon intensive fossil fuels, or by storing biogenic carbon in products for a longer period (or permanent storage).

The Biomass System Perspective decision support tool

The concept of the BSP tool

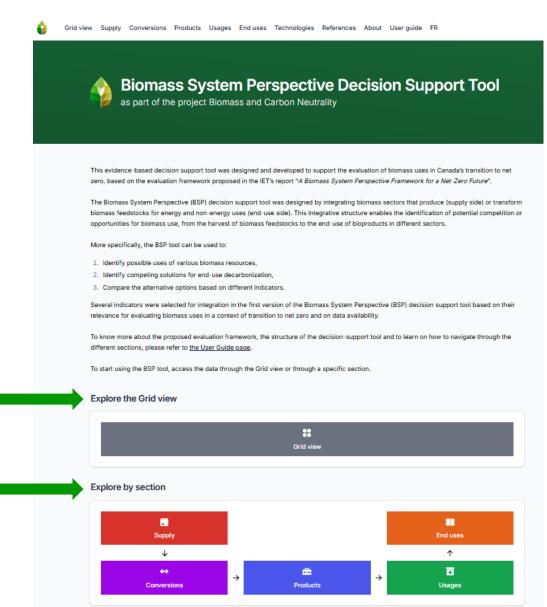
The BSP decision support tool was designed by integrating biomass sectors that produce (supply side) or transform biomass feedstocks for energy and non-energy uses (end-use side).

This integrative structure enables the identification of potential competition or opportunities for biomass use, from the harvest of biomass feedstocks to the end-use of bioproducts in different sectors.



The Biomass System Perspective decision support tool

The concept of the BSP tool


More specifically, the BSP tool can be used to:

- (1) Identify possible uses of various biomass resources,
- (2) Identify competing solutions for end-use decarbonization,
- (3) Compare the alternative options based on different indicators (e.g., efficiency, carbon intensity, etc.).

The Biomass System Perspective decision support tool

- A first version of the Biomass System Perspective (BSP) decision-support tool was developed based on the proposed approach for an evaluation framework.
- The BSP tool is developed to support the evaluations of biomass uses in Canada.
- This tool is publicly available and can serve as a common basis for evidence-based project evaluations.
- Includes a Grid view, and specific views by section (supply, conversion, products, usages, end-uses).

The Biomass System Perspective decision support tool

Indicators

- Several indicators were selected for integration in the first version of the BSP decision support tool based on their relevance for evaluating biomass uses in a context of transition to net zero and on data availability.
- Detailed description of the indicators is available in the report and in the User Guide.
- During this project, regional workshops and a national forum were organized to bring together stakeholders and experts from academia, governments, Indigenous communities and industrial sectors to discuss elements that need to be considered when evaluating biomass uses. The <u>workshops synthesis report</u> sets out all the elements the participants proposed and discussed during the regional workshops.
- Indicators that were not covered in the scope of this project, such as economic indicators tied to the cost of resources and the cost of fuel production, can be further integrated to the tool in future work.

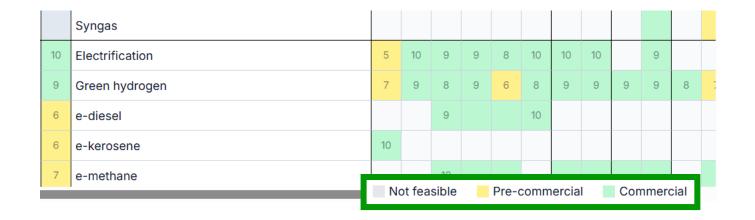
Conversions

The Grid view

Conversion technologies

The Grid view

(e.g., anaerobic digestion, gasification, pyrolysis)


Usage technologies

(e.g., boilers, internal combustion engine, heat pumps)

The lists of conversion and usa are accessible from the navigat

nd usage technologies navigation bar.		Grid view	Supply	Conversions	Products	Usages	End uses	Technologies Conversion t Usage techn	echnologies ologies	About	User guide	FR
★ / Technologies Technologies												
Q Search									ilters :			
Name												
Fast pyrolysis + Upgrading to renewable diesel												
Fast pyrolysis + Upgrading to biojet												
Gasification + catalytic conversion to methanol and/or ethanol with green H2 i	nput											
Acid catalyzed transesterification												
CO2 reduction + Fischer Tropsch synthesis (synthetic hydrocarbon fuels)												
Gasification + catalytic conversion to methanol and/or ethanol												
Alcohol-to-jet (ethanol route)												
Gasification + Catalytic Methanation												
Direct use of electricity												
Landfill gas capture + Upgrading biogas to RNG												
e-methanol synthesis by CO2 and electrolytic hydrogen												
Anaerobic digestion												
Chemical methanation												
Gasification + hydrogen production												
Gasification												
Black liquor supercritical water gasification for co-production of hydrogen and	d power											
Landfill gas capture												

The color code on the Grid view is an indication of the commercial readiness of the technologies corresponding to a certain conversion or usage.

The legend is available on the Grid view:

Not feasible = no technology was found that can be used to transform the considered feedstock to the considered bioproduct.

Pre-commercial = The most recent TRL found is below 8 and/or no commercial facility exists to our knowledge.

Commercial = The most recent TRL found is above 8 and/or a commercial facility exists either in Canada or abroad.

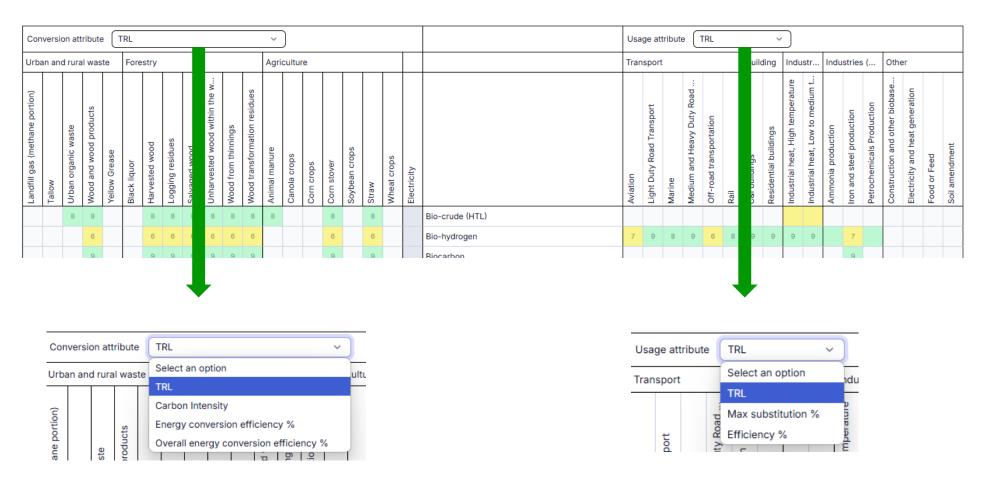
For a certain **conversion** (Supply to Product), it is possible to have multiple **technologies**.

- The figure shows an example for a conversion of wood transformation residues (supply) to Renewable Natural Gas (Product).
- There are 2 types of technologies that are being developed and that potentially could be used for this conversion: pyrocatalytic hydrogenation and gasification followed by catalytic methanation.

Technologies

Urba	an and	d rura	al was	te	Fore	estry						Agri	cultu	e							
Landfill gas (methane portion)	Tallow	Urban organic waste	Wood and wood products	Yellow Grease	Black liquor	Harvested wood	Logging residues	Salvaged wood	Unharvested wood within the w	Wood from thinnings	Wood transformation residues	Animal manure	Canola crops	Corn crops	Corn stover	Soybean crops	Straw	Wheat crops	Electricity		
_		82	82			82	82	82	82	82	82	82	-	-	82		82	-	_	Bio-crue	de (HTL)
			61			50	50	50	50	50	61				50		50			Bio-hyd	rogen
																				Biocarb	on
			39			39	39	39	39	39	39	38			40		40			Biochar	
			90			90	90	90	90	90	90				90		90			Biocoal	(torrefied wood pelle
	86			86									90			90				Biodiese	el (FAME)
			41			35	35	35	35	35	41			46	41		41	46		Bioetha	nol (fermentation)
			46			46	46	46	46	46	46				25		25			Bioetha	nol (gasification)
		60										60			60		60			Biogas	
			60			12	12	12	12	12	60				60		60			Biojet (F	T)
	67			67									67			67				Biojet (H	IEFA)
																				Biojet (l	JHTL)
																				Biojet (l	JPO)
			10			10	10	10	10	10	10			10	10		10	10			thanol ATJ)
																					sobutanol ATJ)
			70		60	70	70	70	70	70	70				70		70				anol (gasification)
																				Food or	Feed
			100		100	40.0	40.0	40.0	40.0	40.0	40.0	40.0			40.0		40.0			Lumber	
			100		100	100	100	100	100	100	100	100			100		100			No conv	
			68			60	60	60	60	60	60				60		60			Pulp and	
		53	68 70			68 63	68		68		68	53			60 53		60 53				s oil (PO)
		33	15			10	70 10	63 10	63 10	63 10	70	oonv	oreia	n	- 33		- 33			Energy	ble Natural Gas
	85		10	85		10	10		10	10		CONV	ei 510						con	version iciency	ple diesel (HDRD/H)
												Pyroc	ataly	tic hy	droge	enatio	n		en	70%	ple diesel (UHTL)
												Gasif								63%	ble diesel (UPO)

The figure on this slide shows another example.


- **Conversion** of wood transformation residues (supply) to biomethanol (Product).
- There are 2 types of **technologies** in the database that potentially could be used for this conversion.
- In this case, the two technologies are similar, however, in the second case there is integration of external H_2 input in the process which results in different efficiency values.

Technologies

Urba	an and	d rura	l was	te	Fore	stry						Agri	cultu	е						
Landfill gas (methane portion)	Tallow	Urban organic waste	Wood and wood products	Yellow Grease	Black liquor	Harvested wood	Logging residues	Salvaged wood	Unharvested wood within the w	Wood from thinnings	Wood transformation residues	Animal manure	Canola crops	Corn crops	Corn stover	Soybean crops	Straw	Wheat crops	Electricity	
		82	82			82	82	82	82	82	82	82			82		82			Bio-crude (HTL)
			61			50	50	50	50	50	61				50		50			Bio-hydrogen
																				Biocarbon
			39			39	39	39	39	39	39	38			40		40			Biochar
			90			90	90	90	90	90	90				90		90			Biocoal (torrefied wood pellets)
	86			86									90			90				Biodiesel (FAME)
			41			35	35	35	35	35	41			46	41		41	46		Bioethanol (fermentation)
			46			46	46	46	46	46	46				25		25			Bioethanol (gasification)
		60										60			60		60			Biogas
			60			12	12	12	12	12	60				60		60			Biojet (FT)
	67			67									67			67				Biojet (HEFA)
																				Biojet (UHTL)
																				Biojet (UPO)
			10			10	10	10	10	10	10			10	10		10	10		Biojet (ethanol ATJ)
																				Biojet (isobutanol ATJ)
			70		60	70	70	70	70	70	70				70		70			Biomethanol (gasification)
												Conv	versio	on					CO	Energy eed nversion
																				fficiency
			100		100	100	100	100	100	100	100				ataly nethai					63% arsion
												and/	or eth	anol						paper
			68			68	68	68	68	68	68				ataly: nethai					^{70%} ioil (PO)
		53	70			63	70	63	63	63	70		or eth		with g					e Natural Gas

The indicator shown by default on the grid view is the technology readiness level (TRL).

The two bars above the "conversion" and "usage" sides of the Grid view, can be used to select the indicator that appears on the Grid.

- After selecting a certain indicator, all values presented on the grid view will show the values corresponding to the chosen indicator.
- This figure shows an example for the selection of "Energy conversion efficiency" as an indicator.
- By looking at the conversion example of wood transformation residues (supply) to biomethanol (Product): the value shown on the grid view is 70%.
- This value corresponds to the most optimist value that exist in the database for this conversion (among all potential technologies).
- By passing the mouse curser on the cell of "70%", a box opens which shows the most optimist value for each potential technology that can be used for this conversion.

е	Fore	stry						Agri	cultu	re							
Yellow Grease	Black liquor	Harvested wood	Logging residues	Salvaged wood	Unharvested wood within the w	Wood from thinnings	Wood transformation residues	Animal manure	Canola crops	Corn crops	Corn stover	Soybean crops	Straw	Wheat crops	Electricity		
		82	82	82	82	82	82	82	-		82		82	-		Bio-crud	e (HTL)
		50	50	50	50	50	61				50		50			Bio-hydr	ogen
																Biocarbo	n
		39	39	39	39	39	39	38			40		40			Biochar	
		90	90	90	90	90	90				90		90			Biocoal (torrefied wood pellets)
86									90			90				Biodiese	I (FAME)
		35	35	35	35	35	41			46	41		41	46		Bioethan	ol (fermentation)
		46	46	46	46	46	46				25		25			Bioethan	ol (gasification)
								60			60		60			Biogas	
		12	12	12	12	12	60				60		60			Biojet (F	Г)
67									67			67				Biojet (H	EFA)
																Biojet (U	HTL)
																Biojet (U	PO)
		10	10	10	10	10	10			10	10		10	10		Biojet (et	hanol ATJ)
																Biojet (is	obutanol ATJ)
	60	70	70	70	70	70	70				70		70				anol (gasification)
								Con	versi	on					со	Energy nversion	eed
															е	fficiency	
	100	100	100	100	100	100	100	conv	versio	on + on to r hanol						63%	paper
		68	68	68	68	68	68			on +						70%	oil (PO)
		63	70	63	63	63	70	and/	or et	on to r hanol			ı				le Natural Gas
		10	10	10	10	10	15	H2 i	nput	_	10		10			Renewar	le diesel (FT)

Gasification + catalytic conversion to methanol and/or ethanol

Conversion options

Technology

- 35 35 35 41 Bioethanol (fermentation) 35 35 46 46 46 46 46 Bioethanol (gasification) 46 Biogas Conversion Energy Biojet (FT) conversion efficiency Biojet (HEFA) 67 Gasification + catalytic 70% Biojet (UHTL) conversion to methanol and/or ethanol with green iet (UPO) H2 input Gasification + catalytic 63% Biojet (ethanol ATJ) conversion to methanol Biojet (isobutanol ATJ) and/or ethanol Conversion efficiency TRL **Overall efficiency** Deployment (%) (%) 9 Commercial 63 89 Gasification + catalytic conversion to methanol and/or ethanol with green H2 input Commercial 9 70 82
- By clicking on the "70%" cell, the corresponding page opens ٠ that presents the list of conversion options (technologies).

Gasification + catalytic conversion to methanol and/or ethanol

Gasification + catalytic conversion to methanol and/or ethanol with green H2 input

• By clicking on the "70%" cell, the corresponding page opens that presents the list of conversion options (technologies).

				41			35	35	35	35	35	41		4	6	41		41	46	Bi	ioethanol (fermentation)	
				46			46	46	46	46	46	46				25		25		Bi	ioethanol (gasification)	
			60										60			60		60		Bi	iogas	
				60			12	12	Con	versi	on					con	Energ	-		Bi	iojet (FT)	
		67			67				_							ef	ficienc			Bi	iojet (HEFA)	
									conv	ificatio versio	n to n	netha	nol				70	6		Bi	iojet (UHTL)	
nding page opens										/or eth nput	nanol	with ç	green								iet (UPO)	
s (technologies).				10			10	10		ificatio							63	%	10	Bi	iojet (ethanol ATJ)	
										versio /or etł		netna	noi							Bi	ioj∉t (isobutanol ATJ)	
					1																	
																			P			
	Dep	oloym	nent				TRL						Со	nversi	on et	fficie	ency (%)				Overall efficiency (%)	
	Со	mme	ercial	1		9	9										63				89	
	Со	mme	ercial			ļ	9										70				82	

By selecting a certain technology, a page opens that contains all data available in the database with their references, and detailed energy balance.

Conversion values

Conversion options

Technology

Conversion efficiency (%)	Overall efficiency (%)	Main input	Other inputs	Main output	Other outputs	Note	References	
70	82	59.5	40.5 Power (for H2)	69.6	10.6 District heat 1.6 Electricity	-	Danish Energy Agency 2024	

• Note that for the same conversion option, we can have multiple conversion values in the database from different references.

Gasification + catalytic conversion to methanol and/or ethanol

Gasification + catalytic conversion to methanol and/or ethanol with green H2 input

Conversion options

Technology

Note : the definition of each indicator appear by passing the mouse cursor over the name of the indicator.

			41		35	35	35	35	35	41			46	41		41	46	Bioethanol (fermentation)
			46		46	46	46	46	46	46				25		25		Bioethanol (gasification)
		60									60			60		60		Biogas
			60		12	12	Con	versi	on				Г	cor	Ene nvers			Biojet (FT)
	67			67										ef	ficie	ncy		Biojet (HEFA)
g								ificatio versio							7	0%		Biojet (UHTL)
5							and/	or eth			green					- 1		iet (UPO)
								nput										
			10		10	10		ificatio versio							6	3%	10	Biojet (ethanol ATJ)
								or eth										Biojet (isobutanol ATJ)
	Deploy	ment			TRL						Co	onvei	rsion	efficie	ency (%)			Overall efficiency (%)
	Comm	nercia	al		9										63		•	89
	Comm	nercia	al		9										70			82

ver the inputs total energy co	ntent.
Conversion efficiency (%)	Overall efficiency (%)
63	89
70	82

Conversion efficienc	
(%	5) (%)
6	3 89
7	0 82

Example of a conversion option that has multiple conversion values in the database

- Conversion: Wood transformation residues to Renewable diesel (FT)
- **Conversion option**: By using Gasification + Fischer Tropsch (1 option possible)
- **Conversion values**: overall efficiency varies from 25 to 64 depending on the reference (4 references are added for this conversion option)

♠ / Conversions / Wood transformation residue... / Gasification + Fischer Tropsch

Wood transformation residues \rightarrow Renewable diesel (FT) / Gasification + Fischer Tropsch

Deployment	TRL	Conversion efficiency (%)	Overall efficiency (%)
Pre-commercial	7	15	64
		. ,	(%)

Urba	in and	d rura	l was	te	Fore	stry						Agri	cultu	e						
Landfill gas (methane portion)	Tallow	Urban organic waste	Wood and wood products	Yellow Grease	Black liquor	Harvested wood	Logging residues	Salvaged wood	Unharvested wood within the w	Wood from thinnings	Wood transformation residues	Animal manure	Canola crops	Corn crops	Corn stover	Soybean crops	Straw	Wheat crops	Electricity	
	67			67									67			67				Biojet (HEFA)
																				Biojet (UHTL)
																				Biojet (UPO)
			10			10	10	10	10	10	10			10	10		10	10		Biojet (ethanol ATJ)
																				Biojet (isobutanol ATJ)
			70		60	70	70	70	70	70	70				70		70			Biomethanol (gasification)
																				Food or Feed
																				Lumber
			100		100	100	100	100	100	100	100	100			100		100			No conversion
																				Pulp and paper
			68			68	68	68	68	68	68				60		60			Pyrolysis oil (PO)
		53	70			63	70	63	63	63	70	53			53		53			Renewable Natural Gas
			15			10	10	10	10	10	15				15		15			Renewable diesel (FT)
	85			85									ificat							Energy proversion fficiency e diesel (UHTL)

Conversion values Conversion efficiency **Overall efficiency** Main input Other inputs Main output Other outputs Note References (%) (%) 15 25 Not specified if energy based IEA Bioenergy 2024a 10 40 100 -Danish Energy Agency 2024 9.98 1.2 Electrification -13.8 Naphtha 14.7 Biojet (FT) 53 High temperature scenario Swanson et al. 2010 - -- -64 Not specified in the reference which inputs and... Vaillancourt, Bahn, and Levasseur 2019 - -- -

Conversion examples

- 'Conversion examples' consists of examples of existing or announced facilities either in Canada or abroad that use or are planned to use the selected conversion technology
- Depending on data availability, each conversion example include the announced yearly production capacity of the facility and the corresponding year

Wood transformation residues – Biomethanol (gasification) / Gasification + catalytic conversion to methanol and/or ethanol wit...

Main input	Conversion values							
Wood transformation residues	Conversion efficiency (%)	Overall efficiency (%)	Main input	Other inputs	Main output	Other outputs	Note	References
Main output Biomethanol (gasification)	70	82	59.5	40.5 Power (for I	H2) 69.6	10.6 District heat 1.6 Electricity	-	Danish Energy Agency 2024
Technology Gasification + catalytic conversion to methanol and/or ethanol with green H2 input								
Carbon Intensity								
<u>10 g CO2e/MJ</u>	Conversion examples							
TRL	Facility name			Year	Yearly production capacity	References	Note	
9	Varennes Carbon Recycling,	Partnership including En	erkem, QC, Ca	anada 2026	125 million litres biofuels	Enerkem, n.d.	The year of	corresponds to the scheduled date.
(Commercial) IEA Bioenergy, n.d.a								

Carbon intensity (CI)

- For each conversion, CI values are presented in the tool under the 'Carbon intensity values' table
- CI values are also accessible through the grid view
- The most optimist value (the lowest) is presented on the Grid view
- All CI values available in the database are presented on the page that is specific to the chosen conversion

Conversions / Wood transformation residue...

Wood transformation residues \rightarrow Renewable diesel (FT)

Main input	Wood transformation residues	Conversion options					
				Deployment	TRL	Conversion efficiency (%)	Overall efficiency (%)
Main output	Renewable diesel (FT)	Gasification + Fischer Tr	opsch	Pre-commercial	7	15	64
Code	WTR.FTRD						
		Carbon intensity value	25				
		Region	Year Methodology	Carbon Intensity Note		References	
				(g CO2e/MJ)			
		Alberta	2024 Unknown		Bio-SynDiesel in ideal cond	Church 2024	
		Alberta	2024 Unknown	32.5 Estimated CI for the	Bio-SynDiesel project in C	Expander Technologies Inc 2024	

- Average CI values in Canada are presented when data is available
- If average value is not found, CI values for specific projects are added
- If no project is found in Canada, but the technology is being developed abroad then the CI value of the developed project is added

Examples

Carbon inte	ensity values		
Region	Year Methodology	Carbon Intensity Note (g CO2e/MJ)	References
Canada	2021 Fuel LCA model	-6.4 Average value for fuels produced or distributed	MELCCFP 2022

Carbon intensity values										
Region	Year	Methodology	Carbon Intensity (g CO2e/MJ)	Note	References					
Alberta	2024	Unknown	-44	Expected CI for the Bio-SynDiesel in ideal cond	Church 2024					
Alberta	2024	Unknown	32.5	Estimated CI for the Bio-SynDiesel project in C	Expander Technologies Inc 2024					

Carbon i	ntensity values				
Region	Year	Methodology	Carbon Intensity (g CO2e/MJ)	Note	References
Global	2024	CORSIA	13.9	CORSIA Default Life Cycle Emissions Values that	ICAO 2024

There are 5 main sections in this tool : Supply, conversions, products, usages and end-uses.

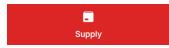
• The main sections can be accessed either from the navigation bar

• Or they can be accessed from the home page

lore by section		
- Supply		EE End uses
\checkmark		↑
↔ Conversions	→ Products	Usages

Grid view Supply Conversions Products Usages End uses

Technologies


References About

• Both access options will lead to the main page of the selected section (example shown below for the 'conversions' main page).

Conversions	
Q Search	
Resource	Product
Wheat crops	Biojet (ethanol ATJ)
Salvaged wood	Syngas
Harvested wood	Biocarbon
Wood and wood products	Renewable Natural Gas
Corn stover	Biocarbon
Landfill gas (methane portion)	No conversion
Logging residues	Renewable diesel (UHTL)
Straw	Renewable Natural Gas
Wood from thinnings	Biojet (UHTL)
Wood from thinnings	Renewable diesel (UHTL)
Wood and wood products	Pyrolysis oil (PO)
Wood and wood products	Biocarbon
Logging residues	Renewable Natural Gas

×	Filters
	Resource
	Q Search
	Product
	Q Search
	Apply filters
	Apply filters

Indicators by supply type

• Description

Definitions vary widely in the literature

Availability

Region, Mass/volume, Energy content

Conversion options

Potential products, technologies, TRL, conversion efficiency, overall energy efficiency

Potential impact of biomass harvest

Region, impact, state of scientific evidence

• Carbon parity time

For a combination of biomass conversion efficiency, substituted product and reference scenario

The following pages show the example of indicators presented for 'Logging residues'

★ / Supply	
Q Search	♥ Filters
Name	Supply sector
Corn crops	Agriculture
Urban organic waste	Urban and rural waste
Electricity	Electricity
Wheat crops	Agriculture
Wood transformation residues	Forestry
Black liquor	Forestry
Wood and wood products	Urban and rural waste
Landfill gas (methane portion)	Urban and rural waste
Logging residues	Forestry
Animal manure	Agriculture
Wood from thinnings	Forestry
Corn stover	Agriculture
Canola crops	Agriculture
Unharvested wood within the wood supply limit	Forestry
Soybean crops	Agriculture
Salvaged wood	Forestry

Description of 'Logging residues'

♠ / Supply / Logging residues

Logging residues

Sector	Availability									
Forestry	Region	Year	Energy content	Volume	Mass	Notes			References	
	Canada	2018	392 PJ	-	21 Mt	In the reference, logging	residues	are defined	Barrette e	
Description Logging residues consist of all branches and foliage not hauled to mills for use in manufacturing standard forest products. Depending on the reference, logging residues could include low-quality logs and tree tops. The amount of logging residues that could be harvested to be used as feedstocks for bioenergy or biomaterials depends on ecological, technical and economical factors. Residue recovery rates vary with equipment, operator skill, season and stand conditions. A synthesis of operational recovery rates of harvest residues from field trials (scientific studies and technical reports) in boreal and temperate forests									Thiffault e	<u>t al. 2016</u>
indicated that the average recovery rate was 52.2% depending on the country. In Canada, residue removal levels are expected to change over time.	Conversion op	otions								
	Main product		Technology			Deployment	TRL	Carbon Intensity (g CO2e/MJ)	Conversion efficiency (%)	Overall efficiency (%)
Code	Biojet (isobutan	nol ATJ)	Alcohol-to-jet (isobutar	nol route)		Pre-commercial	7	-	-	-
LR	Renewable dies	sel (UHTL)	Hydrothermal liquefact and biojet	on + Upgrading	to renewable	diesel Pre-commercial	4	-	-	-
	Bio-crude (HTL	_)	Hydrothermal liquefact	ion		Commercial	8	-	82	82
	Bioethanol (gas	sification)	Gasification + catalytic ethanol	conversion to n	nethanol and/o	r Commercial	8	-	46	60
	Biocoal (torrefie pellets)	ed wood	Slow pyrolysis			Commercial	9	14.54	90	90
	Biocarbon		Slow pyrolysis			Commercial	9	-	-	-
	Bio-hydrogen		Gasification + hydroge	n production		Pre-commercial	6	-150	50	56
	Biojet (UHTL)		Hydrothermal liquefact and biojet	on + Upgrading	to renewable	diesel Pre-commercial	4	-	-	-
	Bioethanol (ferr	mentation)	Enzymatic hydrolysis +	fermentation (c	ellulosic ethan	ol) Commercial	8	-	35	39
	Biojet (UPO)		Fast pyrolysis + Upgrad	ling to biojet		Pre-commercial	-	25.7	-	-
	No conversion		Direct use of biomass (no conversion)		Commercial	-	-	100	100

Availability: presented by Mass or Volume along with the energy content (before conversion)

♠ / Supply / Logging residues

Logging residues

Sector	Availability									
Forestry	Region	Year	Energy content	Volume	Mass	Notes			References	
Description	Canada	2018	392 PJ	-	21 Mt	In the reference, logging	residues are	e defined	<u>Barrette e</u> <u>Thiffault e</u>	
Logging residues consist of all branches and foliage not hauled to mills for use in manufacturing standard forest products. Depending on the reference, logging residues could include low-quality logs and tree tops. The amount of logging residues that could be harvested to be used as feedstocks for bioenergy or biomaterials depends on ecological, technical and economical factors. Residue recovery rates vary with equipment, operator skill, season and stand										
conditions. A synthesis of operational recovery rates of harvest residues from field trials (scientific studies and technical reports) in boreal and temperate forests indicated that the average recovery rate was 52.2% depending on the country. In Canada, residue removal levels are expected to change over time.	Conversion op	otions	Technology			Deployment	TRL	Carbon Intensity	Conversion efficiency	Overall efficiency
								(g CO2e/MJ)	(%)	(%)
LR	Biojet (isobutan	nol ATJ)	Alcohol-to-jet (isobutanol route)			Pre-commercial	7	-	-	-
	Renewable dies	sel (UHTL)	Hydrothermal liquefact and biojet	ion + Upgrading	to renewable	diesel Pre-commercial	4	-	-	-
	Bio-crude (HTL	_)	Hydrothermal liquefact	ion		Commercial	8	-	82	82
	Bioethanol (gas	sification)	Gasification + catalytic ethanol	conversion to r	nethanol and/o	or Commercial	8	-	46	60
	Biocoal (torrefier pellets)	ed wood	Slow pyrolysis			Commercial	9	14.54	90	90
	Biocarbon		Slow pyrolysis			Commercial	9	-	-	-
	Bio-hydrogen		Gasification + hydroge	n production		Pre-commercial	6	-150	50	56
	Biojet (UHTL)		Hydrothermal liquefact and biojet	ion + Upgrading	to renewable	diesel Pre-commercial	4	-	-	-
	Bioethanol (ferr	mentation)	Enzymatic hydrolysis +	fermentation (ellulosic ethar	nol) Commercial	8	-	35	39
	Biojet (UPO)		Fast pyrolysis + Upgrad	ding to biojet		Pre-commercial	-	25.7	-	-
	No conversion		Direct use of biomass (no conversion)		Commercial	-	-	100	100

Conversion options

Conversion options show potential products that can be produced and technologies that can be used for a certain supply type.

Conversion options

Main product 🗘	Technology	Deployment	TRL	Carbon Intensity (g CO2e/MJ)	Conversion efficiency (%)	Overall efficiency (%)
Bio-crude (HTL)	Hydrothermal liquefaction	Commercial	8	-	82	82
Bio-hydrogen	Gasification + hydrogen production	Pre-commercial	6	-150	50	56
Biocarbon	Slow pyrolysis	Commercial	9	-	-	-
Biochar	Slow pyrolysis	Commercial	9	-	39	80
Biocoal (torrefied wood pellets)	Slow pyrolysis	Commercial	9	14.54	90	90
Bioethanol (fermentation)	Enzymatic hydrolysis + fermentation (cellulosic ethanol)	Commercial	8	-	35	39
Bioethanol (gasification)	Gasification + catalytic conversion to methanol and/or ethanol	Commercial	8	-	46	60
Biojet (FT)	Gasification + Fischer Tropsch (optimized for jet)	Pre-commercial	7	-375	12	20
Biojet (UHTL)	Hydrothermal liquefaction + Upgrading to renewable diesel and biojet	Pre-commercial	4	-	-	-
Biojet (UPO)	Fast pyrolysis + Upgrading to biojet	Pre-commercial	-	25.7	-	-
Biojet (ethanol ATJ)	Alcohol-to-jet (ethanol route)	Pre-commercial	7	-	10	13
Biojet (isobutanol ATJ)	Alcohol-to-jet (isobutanol route)	Pre-commercial	7	-	-	-
Biomethanol (gasification)	Gasification + catalytic conversion to methanol and/or ethanol with green H2 input	Commercial	9	-	70	82
Biomethanol (gasification)	Gasification + catalytic conversion to methanol and/or ethanol	Commercial	9	-	63	89
No conversion	Direct use of biomass (no conversion)	Commercial	-	-	100	100
Pyrolysis oil (PO)	Fast pyrolysis	Commercial	9	-	68	85
Renewable Natural Gas	Gasification + Catalytic Methanation	Pre-commercial	7	-	63	85
Renewable Natural Gas	Pyrocatalytic hydrogenation	Pre-commercial	-	-	70	-
Renewable diesel (FT)	Gasification + Fischer Tropsch	Pre-commercial	7	-44	10	53
Renewable diesel (UHTL)	Hydrothermal liquefaction + Upgrading to renewable diesel and biojet	Pre-commercial	4	-	-	-
Renewable diesel (UPO)	Fast pyrolysis + Upgrading to renewable diesel	Pre-commercial	-	-	-	-
Syngas	Gasification	Commercial	9	-	77	86

Potential impact of biomass harvest: A brief synthesis of the potential impact of biomass harvest for a certain supply type,

as concluded from available references.

Category	Region	Impact	State of scientific evidence		Description N	otes Re	eferences			
Soil productivity	Canada	Site-	No sufficient long-term field evidence for boreal and	I	To date, there is no evidence of	I	hiffault et al. 2016			
		specific	temperate ecosystems in Canada			La	amers et al. 2013			
						I	hiffault et al. 2011			
					_	<u>B</u>	arrette et al. 2018			
							<u>)ymond et al. 2010</u>			
							Paré and Thiffault 2016	<u>2</u>		
						<u>N</u>	IRCan 2020			
			De	Renewable di	esel (FT) Gasification + Power Tronsch		Pre-commercial 7	-44	10	ę
				Renewable d	▼	el and bioje		-44	-	
				Renewable c	To date, there is no evidence of consistent, unequivocal and univers effects of logging residues removal on soil productivity in forest	al	Pre-commercial -	-	_	
				Syngas	ecosystems in Canada (Barrette, 2018). A review study in 2016		Commercial 9	-	77	1
				, ,	mentioned that existing studies have not yet quantified the minimum amount of organic material that should be left on site to ensure					
			Pol	otential im	sustainable forest ecosystem functions (Thiffault, 2016). A study fro					
			Ca	ategory	2013 mentioned that specific levels for logging residues retention an only mere methodological choices and no study provided	9	Description		Notes Reference	29
				Soil product	justifications based on long-term field tests (Lamers 2013). There is	eal and ter	mperate ecosystems To date, the	ere is no evidence of		t et al. 2016
					on-going projects in Canada for mapping site sensitivity and soil fertility in Canada (CFS, 2020).		, ,		Lamers e	et al. 2013
					Many factors impact the site sensitivity to biomass harvesting					t et al. 2011 et al. 2018
					including climate, microclimate, mineral soil texture and organic C					<u>l et al. 2010</u> d Thiffault 20
					content, the capacity of the soil to provide base cations and phosphorus and tree species autecology. Long-term field				NRCan 2	
					experiments are needed to determine the categories of sites and					
					stand conditions under which negative impacts of biomass harvestir are more likely to occur. Regionally-specific thresholds for sustainab					
			Ca	arbon pari	biomass removal need to be determined.					
			Bio	liomass use	Guidelines and studies rom the European Union suggest around 20%	ss conversion	n efficiency Substituted product	Reference scenario	References	Region
			Po	ower	to 50% retention levels for ecological reasons. The typical removal rate of logging residues in the boreal and temperate biomes is aroun	d	26 Natural gas	Left on site	Laganière et al. 2017	Canada
			He	leat	50% for operational reasons. It varies between 4 and 89% with	-	75 Oil	Slashburning	Laganière et al. 2017	Canada
			He	leat	highest values found in Nordic countries due to better adapted equipment and trained workforce. However, an improvement in		75 Coal	Left on site	Laganière et al. 2017	Canada
			Pc	ower	technological learning curve and bioenergy policies could increase		26 Natural gas	Slashburning	Laganière et al. 2017	Canada
			Po	ower	the recovery rate in Canada. In a study done by NRCan in 2010, authors mentioned that due to the		26 Oil	Slashburning	Laganière et al. 2017	Canada
			Po	ower	absence of site suitability maps and data on the technical and		26 Oil	Left on site	Laganière et al. 2017	Canada
			He	leat	economic potential of harvesting residue, they chose a net-down proportion of 50% to estimate the ecological, social and technical		75 Coal	Slashburning	Laganière et al. 2017	Canada
		Heat			potential for harvesting residue removals in Canada. This is based of	1	75 Oil	Left on site	Laganière et al. 2017	Canada
				leat Power	a 40% net-down in harvesting residue from a EU study that applied criteria for the protection of soils in european countries.		75 Natural gas 26 Coal	Slashburning	Laganière et al. 2017	Canada

Carbon parity time

Carbon parity time values published in scientific articles and public reports can be added for a combination of supply type, biomass conversion efficiency and substituted product.

Information on the corresponding biomass use case and region considered in the analysis needs to be added as well.

Carbon parity times			l i i i i i i i i i i i i i i i i i i i				
Biomass use	Min carbon parity time (in years)	Max carbon parity time (in years)	Biomass conversion efficiency (%)	Substituted product	Reference scenario	References	Region
Power	> 100	> 100	26	Natural gas	Left on site	Laganière et al. 2017	Canada
Heat	0	0	75	Oil	Slashburning	Laganière et al. 2017	Canada
Heat	> 5	< 14	75	Coal	Left on site	Laganière et al. 2017	Canada
Power	0	0	26	Natural gas	Slashburning	Laganière et al. 2017	Canada
Power	0	0	26	Oil	Slashburning	Laganière et al. 2017	Canada
Power	> 21	< 68	26	Oil	Left on site	Laganière et al. 2017	Canada
Heat	0	0	75	Coal	Slashburning	Laganière et al. 2017	Canada
Heat	> 8	< 23	75	Oil	Left on site	Laganière et al. 2017	Canada
Heat	0	0	75	Natural gas	Slashburning	Laganière et al. 2017	Canada
Power	0	0	26	Coal	Slashburning	Laganière et al. 2017	Canada
Power	> 12	< 33	26	Coal	Left on site	Laganière et al. 2017	Canada
Heat	> 27	< 67	75	Natural gas	Left on site	Laganière et al. 2017	Canada

The following pages show the example of indicators presented for the conversion "Logging residues" to "Renewable diesel (FT)"

★ / Conversions Conversions		
Q Search		♥ Filters
Resource	Product	Carbon Intensity (g CO2e/MJ)
Wood and wood products	Renewable diesel (UPO)	-
Salvaged wood	Renewable diesel (UPO)	-
Logging residues	Renewable diesel (UPO)	-
Wood from thinnings	Renewable diesel (UPO)	-
Wood transformation residues	Renewable diesel (UPO)	-
Straw	Renewable diesel (UPO)	-
Corn stover	Renewable diesel (UPO)	-
Harvested wood	Renewable diesel (UPO)	-
Unharvested wood within the wood supply limit	Renewable diesel (UPO)	-
Salvaged wood	Biochar	-
Wood and wood products	Bioethanol (fermentation)	-55
Salvaged wood	Biocarbon	-
Corn stover	Renewable diesel (UHTL)	-
Unharvested wood within the wood supply limit	Biocoal (torrefied wood pellets)	-
Logging residues	Biojet (FT)	-375
Wood and wood products	Renewable diesel (FT)	-44
Harvested wood	Renewable Natural Gas	-
Unharvested wood within the wood supply limit	Biojet (isobutanol ATJ)	-
Logging residues	Renewable diesel (FT)	-44
Wood from thinnings	Renewable Natural Gas	-

Conversion options + carbon intensity values for the selected conversion

↑ Conversions / Logging residues → Renewabl...

Logging residues \rightarrow Renewable diesel (FT)

Main input	Conversion options									
Logging residues	Technology	Deployment	TRL	Conversion efficiency (%)	Overall efficiency (%)					
Main output <u>Renewable diesel (FT)</u>	Gasification + Fischer Tropsch	Pre-commercial	7	10	53					
Code LR.FTRD										

Carbon intensity values

Region	Year	Methodology	Carbon Intensity (g CO2e/MJ)	Note	References
Alberta	2024	Unknown	32.5	Estimated CI for the Bio-SynDiesel project in C	Expander Technologies Inc 2024
Alberta	2024	Unknown	-44	Expected CI for the Bio-SynDiesel in ideal cond	Church 2024

By clicking on a certain conversion option: a new page opens that presents the corresponding conversion values

and conversion examples

Main input		Conversion options	Conversion options									
Logging residues		Technology		Deployment	TRL	Conversion efficiency (%						
Main output <u>Renewable diesel (FT)</u>		Gasification + Fischer	Tropsch	Pre-commercial	7	10	0 53					
Code LR.FTRD												
	 ↑ Conversions / Logging residues → Renewab / Ga Logging residues → Renewa 		sification + Fiscl	ner Tropsch								
		ble diesel (FT) / Gas	version values	fficiency Main input Other inputs	Main output Other outputs	Note	References					
version values	Logging residues → Renewa	ble diesel (FT) / Gas	Version values Conversion efficiency Overall	fficiency Main input Other inputs	9.98 1.2 Electrification 14.7 Biojet (FT)		References Danish Energy Agency 2024					
responding to	Logging residues → Renewa Main input Logging residues Main output	ble diesel (FT) / Gas	Conversion values	fficiency Main input Other inputs (%)	9.98 1.2 Electrification							
	Logging residues → Renewa Main input Logging residues Main output Renewable diesel (FT) Technology	ble diesel (FT) / Gas	Conversion values Overall (%) 10	fficiency Main input Other inputs (%) 100 -	9.98 1.2 Electrification 14.7 Biojet (FT) 13.8 Naphtha	•	Danish Energy Agency 2024					
esponding to selected	Logging residues → Renewa Main input Logging residues Main output Renewable diesel (FT) Technology Gasification + Fischer Tropsch Carbon Intensity	ble diesel (FT) / Gas	version values Conversion efficiency (%) 10 -	fficiency Main input Other inputs (%) 100 - 53	9.98 1.2 Electrification 14.7 Biojet (FT) 13.8 Naphtha	- High temperature scenario	Danish Energy Agency 2024					

Example of indicators presented for the product "Biodiesel (FAME)"

♠ / Products / Biodiesel (FAME) Biodiesel (FAME)

Category	Bioproduct	Conversion options								
		Main resource	Technology		Deployment	TRL	Carbon Intensity (g CO2e/MJ)		Conversio	on efficiency Overall efficiency (%) (%)
Description	Fatty acid methyl ester (FAME) produced by transesterification of vegetable	Canola crops	Transesterification		Commercial	10	2			90 94
	oils or animal fats. Biodiesel is not fully compatible with diesel engines and is usually blended with petroleum diesel.	Yellow Grease	Acid catalyzed transesterific	cation	Commercial	10	4.7			86 97
		Soybean crops Transesterification		Commercial	10	6			90 94	
Code	BIODIESEL	Tallow	Acid catalyzed transesterific	cation	Commercial	10	-1.2			86 97
References										
		Userse entiene								
Citation		Usage options								
Government of Canada 2025c		Service	Technology	Max substitution (%)	Max substitution note	Efficiency (%)	Efficiency note	Deployment	TRL	References
		Marine	Diesel fuel engine for marine ships	30	Sea trials to date have included FAM	60	This is for conventional marine	Commercial	9	Hsieh and Felby 2017 (Efficiency)
		Rail	Diesel engines for rail	20	Because B20 is compatible with seal	40	Range of 30-40%.This is for	Commercial	10	Mikura International 2024 (Efficiency)
		Off-road transportation	Diesel engines	20	Off-road applications such as	38	Values for conventional diesel	Commercial	-	McCormick and Moriarty 2009 (Substitution) Hjelkrem et al. 2020 (Efficiency) U.S. Department of Energy 2024b (Efficiency)
		Medium and Heavy Duty Road Transport	Diesel engines	20	Generally, B20 and lower-level blend	45	-	Commercial	-	<u>U.S. DOE 2024c (Substitution)</u> Söderena et al. 2021 (Efficiency)

Description, conversion options and usage options for Biodiesel (FAME) product

Example of indicators presented for the end-use "Aviation"

Description of the end-use sector : includes a synthesis of bioproducts and non-biotechnologies that are being developed

or already used in this sector

🕈 / End uses / Aviation

Aviation

Sector	Transport	Usage options								
		Product \$	Technology	Max substitution (%)	Max substitution note	Efficiency (%)	Efficiency note	Deployment	TRL	References
Description	on Bioproducts: HEFA biojet is currently the major commercially produced SAF (biojet) fuel.	Bio-hydrogen	Hydrogen fuel cell aircraft propulsion	-	-	50	Peak efficiency of fu	Pre-commercial	7	Tiwari, Pekris, and Doherty 2024 (Efficiency
	Biojet produced from the ATJ process is emerging; the first commercial production facility of LanzaJet opened in	Biojet (FT)	Jet engines (turbine engine)	50	Maximum blend ratio from	50	-	Commercial	10	<u>Oğur et al. 2025 (Efficiency)</u>
	Soperton, Georgia in January 2024. The third type of biojet that is near commercialization is based on the Fischer- Tropsch process; the world's largest FT biojet production	Biojet (HEFA)	Jet engines (turbine engine)	50	Maximum blend ratio from	50	-	Commercial	10	<u>Oğur et al. 2025 (Efficiency)</u>
	plant (in Louisiana, US) was announced in April 2024. Another possible biomass use is co-processing lipids and FT- liquids with petroleum jet. This option is approved for a	Biojet (UHTL)	Jet engines (turbine engine)	-	Not certified yet by ASTM	50	-	Commercial	10	<u>Oğur et al. 2025 (Efficiency)</u>
	maximum 5% of biobased intermediates. Upgraded biocrude (HTL Oil) and bio-oil (pyrolysis oils) co- processing or use for SAF production is still being pursued	Biojet (UPO)	Jet engines (turbine engine)	-	Not certified yet by ASTM	50	-	Commercial	10	<u>Oğur et al. 2025 (Efficiency)</u>
	but is at lower TRLs and is not yet certified. Many technical challenges will need to be resolved for this pathway.	Biojet (ethanol ATJ)	Jet engines (turbine engine)	50	Maximum blend ratio from	50	-	Commercial	10	<u>Oğur et al. 2025 (Efficiency)</u>
	Non-bio alternatives: Electro-fuels (or PtL), the non-bio SAF alternative to biojet, are expected to play a role in this sector after 2030. A demonstration project is underway in Canada with SAF+	Biojet (isobutanol ATJ)	Jet engines (turbine engine)	50	Maximum blend ratio from	50	-	Commercial	10	<u>Oğur et al. 2025 (Efficiency)</u>
	consortium (using CO2 from industrial flue gas). In Europe, it was announced in May 2024 that the Swiss company,	Electrification	Battery electric plane	-	-	77	For the NASA X-57	Pre-commercial	5	Chin et al. 2020 (Efficiency)
	Metafuels, is planning, in conjunction with European Energy, to construct an e-SAF facility that will be able to produce 12,000 litres of eSAF daily.	Green hydrogen	Hydrogen fuel cell aircraft propulsion	-	-	50	Peak efficiency of fu	Pre-commercial	7	Tiwari, Pekris, and Doherty 2024 (Efficienc
	Liquid hydrogen and battery electric aircraft require further development of aircraft design and infrastructure. They are estimated to start playing a role in reducing the sector's	e-kerosene	Jet engines (turbine engine)	-	-	50	-	Commercial	10	<u>Oğur et al. 2025 (Efficiency)</u>
	estimated to start playing a foet mediating the sector's emissions on the longer term. Since neither are feasible for long-haul flights, their role may be limited to regional and short-haul flights. Air Canada has purchased 30 electric regional aircraft to be	Consumption								
	delivered in 2028. For hydrogen technology, Airbus will conduct hydrogen demonstration flights by 2026.	Region Y	ear Seconda	ary energy	Useful energy conversion factor	Notes	GHG emissions (CO2e)	Notes		References
		Canada 2	021	154 PJ		-	6 Mt	All types included		Langlois-Bertrand, et al. 2024 (Energy) ECCC 2024a (GHG)

The Biomass System Perspective decision support tool

The User Guide

1. Structure of the BSP tool

1.1 The Grid View

1.2 Main sections

- 1.3 Indicators
- 2. Explore the Grid view

2.1. Overview

2.2. Navigation

3. Explore by section

3.1 Supply

3.2 Conversions

3.3 Products

3.4 Usages

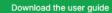
3.5 End-uses

Grid view Supply Conversions Products Usages End uses Technologies References About User guide FR

User guide

This evidence-based decision support tool was designed and developed as part of the IET's project <u>Biomass and Carbon Neutrality</u> to support the evaluation of biomass uses in Canada's transition to net zero, based on the evaluation framework described in the report "A Biomass System Perspective Framework for a Net-Zero Future".

Watch the webinar presentation


The Biomass System Perspective (BSP) decision support tool was designed by integrating biomass sectors that produce (supply side) or transform biomass feedstocks for energy and non-energy uses (end-use side). This integrative structure enables the identification of potential competition or opportunities for biomass use, from the harvest of biomass feedstocks to the end-use of bioproducts in different sectors.

More specifically, the BSP tool can be used to:

Identify possible uses of various biomass resources,
 Identify competing solutions for end-use decarbonization,
 Compare the alternative options based on different indicators.

Several indicators were selected for integration in the first version of the Biomass System Perspective (BSP) decision support tool based on their relevance for evaluating biomass uses in a context of transition to net zero and on data availability.

Detailed description of the structure of the decision-support tool and the integrated indicators is available in the User Guide document.

The Biomass System Perspective decision support tool

This tool is publicly available and can serve as a common basis for evidence-based project evaluations.

To access the BSP online tool:

biomass-perspective-biomasse.ca

Grid view Supply Conversions Products Usages End uses Technologies References About User guide FR

Biomass System Perspective Decision Support Tool as part of the project Biomass and Carbon Neutrality

This evidence-based decision support tool was designed and developed to support the evaluation of biomass uses in Canada's transition to net zero, based on the evaluation framework proposed in the IET's report "A Biomass System Perspective Framework for a Net-Zero Future".

The Biomass System Perspective (BSP) decision support tool was designed by integrating biomass sectors that produce (supply side) or transform biomass feedstocks for energy and non-energy uses (end-use side). This integrative structure enables the identification of potential competition or opportunities for biomass use, from the harvest of biomass feedstocks to the end-use of bioproducts in different sectors.

More specifically, the BSP tool can be used to:


- 1. Identify possible uses of various biomass resources,
- 2. Identify competing solutions for end-use decarbonization,
- 3. Compare the alternative options based on different indicators.

Several indicators were selected for integration in the first version of the Biomass System Perspective (BSP) decision support tool based on their relevance for evaluating biomass uses in a context of transition to net zero and on data availability.

To know more about the proposed evaluation framework, the structure of the decision-support tool and to learn on how to navigate through the different sections, please refer to the User Guide page.

To start using the BSP tool, access the data through the Grid view or through a specific section.

Explore the Grid view

Explore by section

Recommendations

Through the work done in this project, many gaps and barriers were identified, which limit the evaluation and comparison of different biomass uses and the analyses of their potential contribution to decarbonization.

Recommendations are presented in the final report

- For addressing the gaps in evidence that can enhance the integration of quality-data in the Biomass System Perspective decision support tool
- For **actions beyond project analyses** that are necessary to ensure that all biomass sectors in Canada contribute to the transition to net zero

Access to quality-data

Recommendation : Improve data availability for biomass supply

Studies exploring decarbonization solutions or transition pathways for economic sectors in Canada often include biomass feedstocks as potential energy sources to meet demand.

The accuracy of projections depends on the data and assumptions used in the analyses.

However, information on biomass quantities is often hard to track, for several reasons:

- Variability and lack of precision in terminology employed for reporting biomass supply
- Lack of data on "emerging feedstocks"

Estimations of the available and accessible quantities of each type of feedstock, based on recent evidence, are essential for future analyses to accurately estimate the potential of biomass conversion pathways and reduce uncertainties about biomass potential for end-use sector decarbonization.

Access to quality-data

Recommendation : Impose transparency in carbon intensity reporting

- Carbon Intensity (CI) is the main indicator used to compare the impact of existing and emerging biofuels on GHG emissions.
- This metric is also used in government programs, such as the Clean Fuel Regulations, to set targets, track compliance of biofuel industries, and establish a credit market.
- It is currently challenging to track the CI of projects deployed in Canada and compare different projects because of the confidentiality of CI information.
- Approved CIs of projects under the Low Carbon Fuel Standard (LCFS) are regularly published in British Columbia. However, the publications do not specify which feedstocks were used to obtain the corresponding CI value. The CI of projects in Canada that were approved for the CFR are published only for the industries that agreed disclosing the information

A higher transparency in CI reporting under federal and provincial programs is needed to more accurately track the impact of bioenergy and compare different biopathways for biomass use in Canada.

From analyses to action

Recommendation : Put in place measures to ensure that the LULUCF sector reaches negative emissions

- Even when excluding natural disturbances, this sector is a net carbon source through the entire time series of the national inventory (Government of Canada, 2025).
- Croplands have historically been a net carbon sink in Canada in almost all years declared in the national inventory. High variability in emissions mainly occurs due to drought, which made 2022 an exception compared to previous years.
- Emissions from managed forests have been consistently higher than removals, and there are currently no regulatory targets or incentives driving efforts to reach zero or negative emissions in that sector.
- Projections published by ECCC show that emissions from the LULUCF sector are expected to reach negative emissions starting in 2023.

With foreseen increasing demand for biomass feedstocks, it is important to set clear objectives for emissions in the LULUCF sector ensuring that emissions from forest biomass harvest and use would evolve in the required direction: that is, a net carbon sink rather than a net carbon source.

From analyses to action

Recommendation : Establish a Biomass Strategy compatible with Canada's Net-zero commitment

Canada currently has no strategy for biomass use that sets out a vision for biomass role in reaching net zero emissions in 2050.

A national biomass strategy is needed to reduce uncertainties about the future role of biomass, the demand for bioproducts and to ensure coherence of Canada's actions and investments with its climate objectives.

More specifically, a Biomass Strategy for Canada needs to be established based on:

- Scenarios for biomass use that are compatible with a net zero future; and
- Projections of biomass availability across Canada in a changing climate;

As concluded through the research presented in this report, there is no one-size-fits-all solution for biomass uses. The impact of its use, from an ecological, social and economic standpoint, depends on the local context.

Canada needs a national Biomass Strategy based on regional analyses of different scenarios for biomass use across the economy that are compatible with a net-zero future and that account for projections of biomass availability in a changing climate.

Thank you for your attention

If you have any questions, comments or suggestions: roberta.dagher@polymtl.ca