

Canadian Energy Outlook 3rd edition

REPORT #2: Pathways for a net-zero Canada

27 June 2024

Authors: Simon Langlois-Bertrand and Normand Mousseau Review: Louis Beaumier, Laure-Anne Douxchamps, Olivier Bahn and Hamed Kouchaki-Penchah Modelling: Kathleen Vaillancourt and Mathilde Bourque

In this presentation

- The model and main scenarios considered
- Main results and highlights
- Key takeaways from the report

Interventions

Normand Mousseau, Scientific Director, Institut de l'énergie Trottier Kathleen Vaillancourt, CEO, ESMIA Consultants Olivier Bahn, Co-director, Pole e3c

Presentation

Simon Langlois-Bertrand, Lead Author, Institut de l'énergie Trottier

Questions

Louis Beaumier, Executive Director, Institut de l'énergie Trottier

About the Institut de l'énergie Trottier

Created in 2013 with funding for the Trottier Family Foundation, support renewed in 2023

Mission

- The academic training of a new generation of engineers, scientists and innovators with a systemic and trans-disciplinary understanding of energy issue
- The research for sustainable solutions for our energy future, while supporting knowledge generation and innovation in the energy sector to help face the coming decades challenges
- The dissemination of knowledge on energy related topics, contributing to the societal dialogue on energy issues.

Some of our current projects

- Development of an evaluation grid for biomass project in the context of a next-zero Canada
- Reducing electricity peak demand and improving resiliency in a world ever more electrified
- Co-leading, with IESVic and U. Calgary, the Energy Modelling Hub, a pan-Canadian boundary organization that ensures the development of, maintains and makes accessible energy models and brings together public policymakers and energy modelling communities.

Who are we ?

- A modelling & consulting firm **founded in Canada in 2013**.
- Provide 3E (energy-economy-environment) integrated system modelling for strategic decision-making.
- In North America and **globally**.
- With a team of modellers with strong engineering, mathematics, economics, climate change science background (M.Sc., M.Eng., M.B.A & Ph.D.).
- Professional experts with +20 years of experience.

Our services

- Development of turnkey energy system models for public or private organizations worldwide.
- Trainings and support to clients wishing to develop their own energy system model or to use an existing large model.
- Application of energy-economy models for the analysis of complex problems, including energy security and climate change mitigation.

Long term planning-Energy system

Short term planning – Electricity system

Impact on rates and energy bills

Macro-economic impacts

- The e3c Hub is a multidisciplinary hub at HEC Montréal.
- It comprises 13 professors, a research professional and a coordinator.

Our mission

- The e3c Hub's mission is to **advance the transition towards a sustainable society and economy**, in close collaboration with public and private organizations, knowledge transfer centers and local authorities.
- To this end, it **develops 3E models**, and more specifically the AD-MERGE model, a global integrated assessment model.
- Additionally, the e3c Hub **designs and organizes research and knowledge transfer activities** to educate and train diverse audiences in the pursuit of this transition.

Situating this report among other contributions

Canadian Energy Outlook 3rd edition

Objectives of the project: explore and analyze challenges linked to net-zero scenarios, with the help of techno-economic optimization (NATEM)

New structure compared with past editions

- Broken down into a series of reports
- Report #1: The State of Energy and GHG Sources in Canada (January 2024)
- Report #2: Pathways to net-zero (main modelling results, June 2024)
 - Results available with summary of analyses on a dedicated platform (upcoming)

After which:

 Series of reports on strategic challenges or themes identified from the modelling results

NATEM – A TIMES family model

Strengths

- System representation
- Technology explicit: capital stock turnover, effect of techno regulation, >4500 technologies
- Results at the provincial level
- Full coverage of emissions outside of LULUCF (partial coverage)

The scenarios

REF	No constraining GHG reduction targets.		
	Macroeconomic assumptions (GDP, population, oil and gas export prices) are aligned with the Canada Energy Regulator's projections, imposing no additional constraints in terms of GHG emissions.	800 700	
	Includes all GHG reduction and energy policies already in place in addition to the Clean Electricity Regulations and Zero-Emissions Vehicle sales mandate	000 500 400 ₩ 300 200	
NZ50	This scenario imposes a net-zero emissions target on total CO2-eq by 2050, and a 40% reduction target by 2030, with respect to 2005.	100 0	2015
NZ50PS	Same as NZ50 except for cost projections for nuclear SMRs, which are higher (Pessimistic SMR cost projections)	-100	-013

Total emissions

Reaching net-zero emissions

- REF shows downward emissions trend, although short of the 2030 target
- Rapidly expanding gap between NZs and REF
- NZs require a significant amount of emission removal, mainly in the energy production sector

Total GHG Emissions by Sector

Transformation of energy consumption profiles

Ъ

- Demand goes down over time in NZs, despite population growth and even without loss in energy services
- Productivity gains in the delivery of services, including from electrification
- Rebound after 2050 due to population growth and almost completed electrification

Waste 8,000 Non-energy products Renewables 6,000 Petroleum products Natural gas Hydrogen 4,000 Heat Electricity 2,000 Coal, coke and residual material Bioenergy Aviation fuel 0 NZ50PS NZ50PS NZ50 NZ50PS NZ50PS REF NZ50 REF REF NZ50 REF NZ50 2021 2030 2040 2050 2060

Final energy consumption by source

Transport

- ZEV leads to the electrification of light duty vehicles
- Limited decarbonization in REF outside of this segment

Ы

 Choices ahead: many technologies compete in some sub-sectors, several of which require significant new infrastructure

Petroleum products 3,000 Natural gas and LNG Hydrogen 2,000 Electricity Bioenergy Aviation fuel 1,000 0 NZ50PS NZ50PS NZ50PS NZ50 NZ50 NZ50 NZ50 REF NZ50PS REF REF REF 2021 2030 2040 2050 2060

Energy consumption in transport

Transport (continued)

MtCO2e

- Evolution of scenarios (including REF) shows growing importance of some segments
- High cost of decarbonization options for marine and air, and neglect of off-road

Road 150 Rail Off-road Marine 100 Air 50 0 REF NZ50 NZ50PS REF NZ50 NZ50PS NZ50 NZ50PS NZ50 NZ50PS REF REF 2021 2030 2040 2050 2060

Transport emissions by sub-sector

Energy production

- Floor imposed on oil and gas production
- Not reducing O&G production as extensively as in NZ means reducing elsewhere at much higher cost
- Natural gas and uranium driven by domestic demand (export markets projections are given)

Primary energy production

Electricity generation

- Electricity demand expands dramatically in all NZs
- Uncertainty beyond cost for deployment of some sources
- NZ50PS scenario used as a proxy for baseload deployment choices (social acceptability for instance)

Electricity generation

Industry (outside oil & gas)

- An already diversified energy mix in industry evolves slowly in NZs, highlighting barriers
- Important challenges result from the varied needs across sub-sectors and the importance of process emissions

Energy consumption in industry

Emissions from industrial processes

- Decarbonizing buildings through electrification represents a low-hanging fruit, but barriers remain
- Convergence of winter peak demand requires adapted solutions to avoid overbuilding electricity capacity (not fully captured by the model)

Energy consumption in residential and commercial buildings

Capturing emissions

- Around 172 MtCO2e of emissions (25% of today's) must be captured annually to reach net-zero, growing to 196 by 2060
- Negative-emission technologies are essential, with very important uncertainties

Captured and stored emissions

Hydrogen

- Consumption smaller in REF despite strong growth
- REF and NZ50 differ sharply on • production technology and importance of exports as a driver

Transport Industrial 600 Energy production Comm. and inst. buildings ය ⁴⁰⁰ 200 0 NZ50 1 REF NZ50 REF NZ50 NZ501

REF NZ50 NZ50

Hydrogen production

REF NZ50 NZ50

Hydrogen consumption

Tripling of use in NZs by 2030, ^{2,0} largely because of ability to compensate remaining ^{1,5} emissions ^{1,0}

Biomass feedstock used by type

Thinking about 2030

- Main emissions reductions for 2030 are expected from oil and gas production, buildings and electricity generation
- But much faster pace
 suggested by NZ50 to meet the
 2030 target almost structurally
 impossible

	2021	2030		2050	
	Reference year	REF	NZ50	REF	NZ50
Reductions wrt 2005 (730 MtCO ₂ e)	-6%	-14%	-40%	-25%	-100%
Total net emissions (MtCO ₂ e)	684	632	439	546	0
Sectors					
Electricity production	77	49	13	5	-17
Oil and gas (including fugitive emissions)	185	175	131	181	10
Buildings	72	54	37	36	3
Industry (outside of oil and gas)	92	89	64	99	18
Transport	167	169	166	106	29
Agriculture	58	64	58	70	49
Waste	18	9	7	7	5

Differences between now and CEO 2021

Main differences:

- Reference scenario shows reductions, not increases, in GHGs (ZEV, CER, CFS, ...)
- Costs of decarbonizing are less than projections for net-zero in 2021 (technological developments providing solutions but also reducing uncertainties)

Similarities:

- Dramatic expansion of electricity (including in REF)
- Reductions in crude oil production to mitigation costs
- Magnitude of emissions compensation (with the addition of biochar)

Main takeaways

Net-zero requires making choices compatible with the long-term goal, regardless of the shortterm target

- Additional measures and road maps urgently needed to enable a net-zero pathway, including from provinces
- No time for dead-end solutions

Main takeaways

Infrastructure deployment faces numerous challenges

- The infrastructure gap is enormous and requires deployment plans rapidly (IRPs)
- The dramatic expansion of electricity's role in the mix is not simply a challenge in terms of infrastructure construction
- In some sectors, competing technologies will require political choices to avoid duplication or inefficiencies in infrastructure deployment

Main takeaways

Need for road maps to reduce uncertainties and unknowns

- Some understudied sectors could be relatively low hanging fruits
- Road maps needed for sectors where few reductions are expected
- Assessing the role of biomass in decarbonization pathways, including beyond bioenergy, is necessary
- Exploring and planning the deployment of negative emissions options is urgent

Building on the results and the questions they raise, several new projects in development for part 3 in the fall

Thank you!

iet@polymtl.ca

https://iet.polymtl.ca/en/energy-outlook/