Overview of the Federal Government's Demand Flexibility R&D Activities

Véronique Delisle

EBC Annex 67 Energy Flexible Buildings Public Seminar

Polytechnique Montréal

October 12, 2018

Outline

- CanmetENERGY Overview
- Role of Load Flexibility in the Smart Grid
- Peak Shaving Case Study
- Renewable Energy Integration Project

CanmetENERGY Overview

Federal Government and the Smart Grid

Canmet Laboratories Across Canada

Oil sands & heavy oil

Devon

- Buildings & communities
- Industrial processes
- Clean electricity
- Bioenergy
- Renewables
- Transportation

Ottawa

- Industrial processes
- Renewable energy integration
- RETScreen International

Varennes

- Transportation (materials)
- Pipelines
- Manufacturing

Hamilton

Partnerships & Collaboration

Smart Grid Deployment Metrics in Canada 2018

In 2016, **81**% of electricity in Canada came from non-GHG emitting sources

01234-**SMART METER SOLAR PV WIND** 0.96 GW 2.10 GW >81% distributed out of 12.70 GW 2.48 GW >5.8 k >850 installed grid-connected capacity charging outlets Data as of December 31, 2017 Data as of July 31, 2018 Data as of August 17, 2018 Data as of July 1, 2018 © Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

Role of Load Flexibility in the Smart Grid

Role of Load Flexibility

- Traditionally, approaches to balance supply and demand consist of
 - Dispatching generators
 - Buying energy on the electricity market
- Now, demand enabled by the smart grid - can be a new source of flexibility
- Flexible loads can shift their demand (ideally with little or no effect on user comfort)

Rocky Mountain Institute: https://rmi.org/news/demand-flexibility-can-grow-market-renewable-energy/

Flexible Loads in the Residential Sector

Added electrical storage Inherent storage in homes **Electrical** Thermal loads with built-in storage vehicles (electric water heaters, electric thermal storage devices)

Peak Shaving Case Study

Smart Thermostats Pilot Program

Objective: Assess the potential of smart thermostats controlling electric baseboard heaters for peak shaving, while exploring impacts on

- utility demand
- energy consumption
- participant comfort

Thermostat Pilot: Setup

Scheduling

Utility DR Benefits – All Thermostats

Renewable Energy Integration Project

Summerside Smart Grid Project for Wind Integration

Summerside, PEI

- 15,000 inhabitants
- 27 MW peak
- 130 GWh annual energy consumption

Electric utility

- Municipally-owned
- 21 MW wind generation
- Wind represents 46% of the electricity production
- Interconnected with NBPower

Prince Edward Island

Wind Integration Challenge

- Mismatch between wind and load means that energy must often be exported to bulk grid
- Consequences:
 - Lost GHG reduction potential with clean energy not being used locally
 - Missed economic gains by exporting the wind energy at less than value

Solution

Solution:

 A smart grid program increasing local utilization of wind generation

Since wind cannot be controlled (without losing energy), solution must be on the load side

Approach:

- Increase electric heat load
- Enable flexibility in heat load through utility managed heat energy storage
- Use wind energy to heat or to charge energy storage appliances for space/water heating

High temperature electric water heater with thermostatic valve

Program

Consumer-side Program:

- Encourage replacement of oil-fired equipment with
 - Electric thermal storage (ETS) space heating units
 - High capacity/temperature electric water heaters

by offering discounted rates

- Offsetting customer-borne capital costs
- Bucket at 8¢ vs 12¢ per kWh for appliance energy demand
- Appliance load management options
 - Smart (dynamically)
 - Time-of-use

Total device uptake, to 2015

Device	No.	Total Charging Capacity (kW)	Total Storage Capacity (kWh)	Estimated Energy Use (MWh)
Room ETS	120	642	3240	1436
House ETS	45	1244	6618	2153
ThermElect Large ETS	6	480	2280	2997
Water Heater	140	630	849	n/a

Total of 3 MW and 13.5 MWh of available storage

Results

 Additional 621 MWh (24% of surplus) of wind locally consumed

Portion of energy use supplied by wind, per device

400 t CO₂eq GHG avoidance

ToU ETS (small home)	Smart ETS (small home)	ToU EWH	
2.4 t CO₂eq/y/appliance	2.9 t CO ₂ eq/y/appliance	0.3 t CO ₂ eq/y/appliance	

Conclusion

- The transition to a smarter grid has already begun
- Challenges remains to seamlessly integrate all smart grid components (renewable energy, flexibles loads, microgrids, demand response)

Questions

Véronique Delisle, Eng., Ph.D.

Project Manager
Renewable Energy Integration Program
Natural Resources Canada

veronique.delisle@canada.ca

