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 Approaches of Travel Demand Modelling

 Aggregate Demand Models:

 Total Demand Models

 Issues with Total Demand Modelling

 Modelling Shares of Alternative Demands

 Modelling Total Demand along with Shares

 Ad-hoc Modelling approaches:

 Elasticity-based Model

 Pivot-point Updating

Outline
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 Urban travel demands
 Number of trips per day by individuals/households/traffic zones
 Proportions of trips by different modes: Transit ridership
 Proportion of trips on different routes/links/corridors: Transit lines

 Inter-city travel demands:
 Total trips by different modes (bus, rail, air, car) between cities

 International travel demands:
 Total number of passenger travel within region, inter-region, between 

countries, between continents
 Passenger arrival rates by ground transpiration modes (bus, rail, car)

 Tourism travel demands / Special travel generators:
 Trips generated by hotels
 Trips attracted by hospitals
 Trips attracted to historical sites, recreational locations, etc. 

Travel Demands

khandker.nurulhabib@utoronto.ca 3



 Based on the concept of utility:
 Direct utility: when utility function is a function of quantity demands
 Indirect utility: when utility function is not a function of quantity

 Based on uncertainty in predictions:
 Deterministic method: trip rate tables, diversion curves etc.
 Stochastic method: application of stochastic econometric models

 Based on mathematical optimization approach:
 Random utility maximization
 Fitting linear/non-linear demand curves

 Based on level of aggregate of travel demands:
 Aggregate demand model: modelling aggregation of choices
 Disaggregate demand model: modelling individual choices

Approaches of Travel Demand Models
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 Choice of aggregate versus disaggregate demand models:
 Purpose and context of study
 Data availability and resource available for model development

 Disaggregate models are always better than aggregate models if 
and only if data are available and computational burdens are 
allowed

 In practice, aggregate models complements disaggregate models
 Aggregate demand models:

 Suppresses heterogeneity in travel demand 
 Suppresses variability in travel demands
 Future predictions are uncertain future when extrapolation is 

problematic

Aggregate versus Disaggregate Model
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Aggregate Demand Models
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Aggregate 
Demand 
Models

Total 
Demand 
Models

Total Demands 
& Market 
Segmentation 

• Linear Model

• Log-linear /Cobb-Douglas 
Form Model

• Linear Logit Model

• Translog Demand System Model
• Constant Elasticity of Substitution 

(CES) Demand System Model 
• Almost Ideal Demand System 

(AIDS) Model

• Box-Cox regression
Market 
Segmentation 
Model



 Linear regression model:

 Elasticity of demand (function of xj)

 Model estimations: Least-Square or Maximum Likelihood
 Limitations:

 Assumption of linear functional form
 No restriction on ‘zero value’ prediction
 Difficult to handle data with large portion of ‘zero values’ of dependent 

variables

Linear Model

khandker.nurulhabib@utoronto.ca 7

  
i

n xxxx 110N22110  ..........  trips)ofnumber   (e.g. D Demand, Total

j

j
 

D

D

/

D/D
x

D

x

xxx
E

j

jj






















 

i

ixpdf i0 is of mean value  that theconsiering;ofthe)f(  Pr(D) 



 Multiplicative functional form:

 Elasticity of demand

 Model estimations: Least-Square or Maximum Likelihood
 Limitations:

 Fixed elasticity

 Handling ‘zero value’ in the observed data needs extra care

Log-Linear / Cobb-Douglas Form Model
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 Multiplicative functional form gives flexibility of various possible 
forms (easy to handle categorical/dummy variable)
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 Non-linear transformation of dependent and/or independent variables

 Elasticity of demand

 Model estimations: Least-Square or Maximum Likelihood

Box-Cox Regression Model
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 Presence of ‘zero value’ of observed demand in the dataset causes problem in model 
estimation as well as prediction

 Ad-hoc way of handling ‘zero value’:
 For Cob-Douglas formulation: offset all observation by 1 so that for the ‘zero 

value’ it becomes log(D+1)=log(0+1)=0
 For linear regression cannot handle ‘zero demand’. So, one has to remove data 

of ‘zero demand’
 In case, the ‘zero demands’ are legitimate and has a reasonable share in the observed 

data, a sample selection approach needs to be taken:

Handling Zero Demand
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 Lag effects:
 Lag effect of changes in supply (cost/price), context (socio-economic)
 Lag effect of changes in total demand

 Aggregate demand model can handle lag effect:
 Total observed demand, D is the equilibrium demand
 Actual demand or Desired Demand, D* is unobserved
 Assumption is that demand, the observed or equilibrium demand (D) adjusts 

partially towards desired level over the time steps of analysis (t):

 Higher the value of μ quicker is the adjustment.

 Instant adjustment if the value of μ = 1

 No adjustment, if μ = 0

Lag effect in Aggregate Demand Modelling
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 Since actual demand or desired demand is unobserved, we can 
consider it as a random variable

Lag effect in Aggregate Demand Modelling
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 Lagged effect model can be estimated a linear regression model

 Model estimated without considering lagged demand will give static 
elasticity

 Model estimated with lagged demand effect will give long-term elasticity

Lag effect in Aggregate Demand Modelling
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Example: Modelling Demand of Inter-City Train
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Cobb-Douglas Specification:

o Jt is the total demand (passenger-miles) at time t
o Jt-1 is the total demand (passenger-miles) at time t-1 
o Gt is the income variable at time t
o Ft is the rail fare price variable
o Tt is a rail performance measure
o t is the linear time trend
o xk is a vector of other variables, including dummies and variables relating to 

competing modes
o β0 , β1 , β2 , β3 , β4 , β5 , γk etc. are the parameters of the model (to be 

estimated)
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Example: Modelling Demand of Inter-City Train
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 Observed dataset does not have any ‘zero value’: Used log-normal



Example: Modelling Demand of Inter-City Train
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Variable selection: Based on data availability

 It was considered essential to include variables covering a number of 
market and service characteristics:

 Demand lag, and time trend

 Own-price elasticity

 Cross-elasticity to auto and air, especially fares

 Service quality in terms of on-time performance

 Macroeconomic factors (GDP, income)

 Seasonality



Example: Modelling Demand of Inter-City Train
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Variable Period Form
Lag demand: Ln of Pax-mile Quarter Lag (years) =

1 / (1-parameter)

Rail Fare: Rev. per pax-mi Quarter Coefficient > 1 : elastic

On-Time Performance (OTP) Quarter Ln (%)

Average Employment Quarter Ln (Millions)

Income Proxy (Avg. Market’s Emplmt. x GDP / Employed) Quarter Ln ($ Millions)

Time Trend Quarter units

Quarterly Dummies Quarter 0 or 1

Gasoline Price Quarter Deflated (real) price

Airfare Annual Deflated (real) price

GDP of European Union Quarter Real GDP



Example: Modelling Demand of Inter-City Train
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Robust

Variables Coef. Std. Err. t-Stat
Total Pax-Miles in Previous 
Quarter 0.518 0.154 3.360

Avg Revenue per Pax-Mile -0.533 0.288 -1.850

OTP 0.132 0.100 1.320

Avg Employment in Millions 2.045 0.841 2.430

Time Step -0.029 0.019 -1.490

Quarter 1 Dummy 0.054 0.037 1.450

Quarter 2 Dummy 0.101 0.066 1.520

Quarter 3 Dummy 0.252 0.060 4.200

Gas Price 0.418 0.135 3.080

Constant 3.387 1.385 2.450

R-squared     =  0.93



 Consider three alternatives: Air(A), Bus(B), Car(C) for an intercity case

 Market shares of the alternatives

 Consider observed shares as observed (pseudo) probabilities & use Logit 
function with fixing one alternative as the base alternative (A in this 
example):

 Logarithm of the ratio (log of odd-ratio) of the shares become a linear 
regression model

Market Segmentation: Aggregate Logit Model
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 Consider two alternative urban commuting modes: Car (C1), 
Transit (C2)

 Data: Observation

2-Alternative Aggregate Logit Model
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 Linear-Regression of log-odd 
ratio against the cost difference 
will give a model linear logit 
model

2-Alternative Aggregate Logit Model
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 Based on indirect utility function and logit formulation ( A as the reference 
alternative)

 Log-odd ratios (with respect to the reference alternative): Can be modelled as Log-
linear regression model

 Estimation: 
 Maximum likelihood estimation (for more than 2 alternatives)

 Least square regression as regression of log-odd ratio (convenient for 2 
alternatives)

Multi-Alternative Aggregate Logit Model
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 Key point is to set the reference alternative. With respect to the reference 
alternative two types of formulations are possible
 Ratio of common-attributes (e.g. cost, time) format

 Difference of common-attributes (e.g. cost, time) format

 Estimation: either by maximum likelihood or least-square for log-odd ratio
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• XCA-k = the common attributes of C 
and A

• XC-j = the attributes of only C

• XBA-k = the common attributes of B 
and A

• XB-j = the attributes of only B

Aggregate Logit Model with Capturing Competition



 Elasticity of substitution of a variable between an alternative (B,C) 
against the reference alternative (A)

 Elasticity of substitution between two non-reference alternatives (B and C)

 Such elasticity measure is problematic as there no consistent measurement of 
elasticity when attributes of both non-reference alternative change

 Elasticity of substitution depends on reference alternative

Aggregate Logit Model with Capturing Competition
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 Elasticity of substitution between two non-reference alternatives (B and C)

 Such elasticity measure is also problematic as there no consistent 
measurement of elasticity when attributes of both non-reference alternative 
change
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 Translog demand system model specifies indirect utility (generalized cost), V
function of a demand generation process

 Once specified 
 Total quantity demand for alternative j, xj

* is estimated 
by applying Roy’s Identity,

 Finally the demand share of alternative j, Pi(j)

Total Demand & Market Segmentation: Translog Model
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 Modelling demands for making trips of j destinations

 Assumed that observed demand for alternative j by individual i has, xij* has 
randomness and so follows a distribution

 Use Poisson or Lognormal regression model 

Empirical Example: Translog Model
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Translog Model Provides Superior Specification
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 Trip generation to alternative 
destinations (j and k) by an 
individual (i) at varying substitution 
scenarios that can be captured by a 
TransLog model:
 A zero interaction coefficient (βjk=0) 

indicates no substitution 
(independent demands)

 A negative interaction coefficient 
(βjk<0) indicates an increase in Trips 
demand to j at the expense of those 
to k

 A positive interaction coefficient 
(βjk>0) indicates complementary 
relationship



 Translog demand system model  is based on microeconomic principle of 
utility maximization

 Substitution patterns between choice alternatives can be accommodate 
flexibly

 Model can be estimated by using least-square estimation method or 
maximum likelihood estimation technique

Market Segmentation: Translog Model
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 Predicting changes in total demands:

 Tt is the total demand after change of x at time t (e.g. transit ridership at 
time t)

 Tt-1 is the total demand before change of x (e.g. transit ridership time t-1)
 xt is the attribute after change at time t (e.g. transit fare at time t)
 xt-1 is the attribute before change at time t (e.g. previous transit fare)

 Elasticity of demand (E) needs to be known and a fixed value
 Useful for short term analysis when the expectation of ‘no big change in 

behaviour’ is valid

Predicting Incremental Changes: Elasticity-based Model
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 Example of typical functional forms of total demand and corresponding 
elasticity:
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 P/(j) is probability/proportion of choosing j after change in systematic utility v0
j

 P0(j) is probability/proportion of choosing j before change
 vj is the systematic utility function after change 
 v0

j is the systematic utility before change 

 Systematic utility function needs to be known and pre-defined
 Considers that preference structure and competition do not change

Predicting Incremental Changes: Pivot-Point Model
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 Aggregate models are often very useful:

 When quick estimation of changes in necessary

 Lack of detailed micro data for disaggregate modelling

 Forecasting scenario analysis without precise specification of scenario 
contexts

 Aggregate and Disaggregate models are complementary:

 Should not be considered either or

Aggregate Demand models
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Thank You
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