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 Approaches of Travel Demand Modelling

 Aggregate Demand Models:

 Total Demand Models

 Issues with Total Demand Modelling

 Modelling Shares of Alternative Demands

 Modelling Total Demand along with Shares

 Ad-hoc Modelling approaches:

 Elasticity-based Model

 Pivot-point Updating

Outline
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 Urban travel demands
 Number of trips per day by individuals/households/traffic zones
 Proportions of trips by different modes: Transit ridership
 Proportion of trips on different routes/links/corridors: Transit lines

 Inter-city travel demands:
 Total trips by different modes (bus, rail, air, car) between cities

 International travel demands:
 Total number of passenger travel within region, inter-region, between 

countries, between continents
 Passenger arrival rates by ground transpiration modes (bus, rail, car)

 Tourism travel demands / Special travel generators:
 Trips generated by hotels
 Trips attracted by hospitals
 Trips attracted to historical sites, recreational locations, etc. 

Travel Demands
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 Based on the concept of utility:
 Direct utility: when utility function is a function of quantity demands
 Indirect utility: when utility function is not a function of quantity

 Based on uncertainty in predictions:
 Deterministic method: trip rate tables, diversion curves etc.
 Stochastic method: application of stochastic econometric models

 Based on mathematical optimization approach:
 Random utility maximization
 Fitting linear/non-linear demand curves

 Based on level of aggregate of travel demands:
 Aggregate demand model: modelling aggregation of choices
 Disaggregate demand model: modelling individual choices

Approaches of Travel Demand Models
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 Choice of aggregate versus disaggregate demand models:
 Purpose and context of study
 Data availability and resource available for model development

 Disaggregate models are always better than aggregate models if 
and only if data are available and computational burdens are 
allowed

 In practice, aggregate models complements disaggregate models
 Aggregate demand models:

 Suppresses heterogeneity in travel demand 
 Suppresses variability in travel demands
 Future predictions are uncertain future when extrapolation is 

problematic

Aggregate versus Disaggregate Model
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Aggregate Demand Models
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Aggregate 
Demand 
Models

Total 
Demand 
Models

Total Demands 
& Market 
Segmentation 

• Linear Model

• Log-linear /Cobb-Douglas 
Form Model

• Linear Logit Model

• Translog Demand System Model
• Constant Elasticity of Substitution 

(CES) Demand System Model 
• Almost Ideal Demand System 

(AIDS) Model

• Box-Cox regression
Market 
Segmentation 
Model



 Linear regression model:

 Elasticity of demand (function of xj)

 Model estimations: Least-Square or Maximum Likelihood
 Limitations:

 Assumption of linear functional form
 No restriction on ‘zero value’ prediction
 Difficult to handle data with large portion of ‘zero values’ of dependent 

variables

Linear Model
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 Multiplicative functional form:

 Elasticity of demand

 Model estimations: Least-Square or Maximum Likelihood
 Limitations:

 Fixed elasticity

 Handling ‘zero value’ in the observed data needs extra care

Log-Linear / Cobb-Douglas Form Model
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 Multiplicative functional form gives flexibility of various possible 
forms (easy to handle categorical/dummy variable)
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Log-Linear / Cobb-Douglas Form Model



 Non-linear transformation of dependent and/or independent variables

 Elasticity of demand

 Model estimations: Least-Square or Maximum Likelihood

Box-Cox Regression Model
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 Presence of ‘zero value’ of observed demand in the dataset causes problem in model 
estimation as well as prediction

 Ad-hoc way of handling ‘zero value’:
 For Cob-Douglas formulation: offset all observation by 1 so that for the ‘zero 

value’ it becomes log(D+1)=log(0+1)=0
 For linear regression cannot handle ‘zero demand’. So, one has to remove data 

of ‘zero demand’
 In case, the ‘zero demands’ are legitimate and has a reasonable share in the observed 

data, a sample selection approach needs to be taken:

Handling Zero Demand
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 Lag effects:
 Lag effect of changes in supply (cost/price), context (socio-economic)
 Lag effect of changes in total demand

 Aggregate demand model can handle lag effect:
 Total observed demand, D is the equilibrium demand
 Actual demand or Desired Demand, D* is unobserved
 Assumption is that demand, the observed or equilibrium demand (D) adjusts 

partially towards desired level over the time steps of analysis (t):

 Higher the value of μ quicker is the adjustment.

 Instant adjustment if the value of μ = 1

 No adjustment, if μ = 0

Lag effect in Aggregate Demand Modelling
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 Since actual demand or desired demand is unobserved, we can 
consider it as a random variable

Lag effect in Aggregate Demand Modelling
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 Lagged effect model can be estimated a linear regression model

 Model estimated without considering lagged demand will give static 
elasticity

 Model estimated with lagged demand effect will give long-term elasticity

Lag effect in Aggregate Demand Modelling
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Example: Modelling Demand of Inter-City Train
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Cobb-Douglas Specification:

o Jt is the total demand (passenger-miles) at time t
o Jt-1 is the total demand (passenger-miles) at time t-1 
o Gt is the income variable at time t
o Ft is the rail fare price variable
o Tt is a rail performance measure
o t is the linear time trend
o xk is a vector of other variables, including dummies and variables relating to 

competing modes
o β0 , β1 , β2 , β3 , β4 , β5 , γk etc. are the parameters of the model (to be 

estimated)
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Example: Modelling Demand of Inter-City Train
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 Observed dataset does not have any ‘zero value’: Used log-normal



Example: Modelling Demand of Inter-City Train
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Variable selection: Based on data availability

 It was considered essential to include variables covering a number of 
market and service characteristics:

 Demand lag, and time trend

 Own-price elasticity

 Cross-elasticity to auto and air, especially fares

 Service quality in terms of on-time performance

 Macroeconomic factors (GDP, income)

 Seasonality



Example: Modelling Demand of Inter-City Train
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Variable Period Form
Lag demand: Ln of Pax-mile Quarter Lag (years) =

1 / (1-parameter)

Rail Fare: Rev. per pax-mi Quarter Coefficient > 1 : elastic

On-Time Performance (OTP) Quarter Ln (%)

Average Employment Quarter Ln (Millions)

Income Proxy (Avg. Market’s Emplmt. x GDP / Employed) Quarter Ln ($ Millions)

Time Trend Quarter units

Quarterly Dummies Quarter 0 or 1

Gasoline Price Quarter Deflated (real) price

Airfare Annual Deflated (real) price

GDP of European Union Quarter Real GDP



Example: Modelling Demand of Inter-City Train

khandker.nurulhabib@utoronto.ca 19

Robust

Variables Coef. Std. Err. t-Stat
Total Pax-Miles in Previous 
Quarter 0.518 0.154 3.360

Avg Revenue per Pax-Mile -0.533 0.288 -1.850

OTP 0.132 0.100 1.320

Avg Employment in Millions 2.045 0.841 2.430

Time Step -0.029 0.019 -1.490

Quarter 1 Dummy 0.054 0.037 1.450

Quarter 2 Dummy 0.101 0.066 1.520

Quarter 3 Dummy 0.252 0.060 4.200

Gas Price 0.418 0.135 3.080

Constant 3.387 1.385 2.450

R-squared     =  0.93



 Consider three alternatives: Air(A), Bus(B), Car(C) for an intercity case

 Market shares of the alternatives

 Consider observed shares as observed (pseudo) probabilities & use Logit 
function with fixing one alternative as the base alternative (A in this 
example):

 Logarithm of the ratio (log of odd-ratio) of the shares become a linear 
regression model

Market Segmentation: Aggregate Logit Model
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 Consider two alternative urban commuting modes: Car (C1), 
Transit (C2)

 Data: Observation

2-Alternative Aggregate Logit Model
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 Linear-Regression of log-odd 
ratio against the cost difference 
will give a model linear logit 
model

2-Alternative Aggregate Logit Model
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 Based on indirect utility function and logit formulation ( A as the reference 
alternative)

 Log-odd ratios (with respect to the reference alternative): Can be modelled as Log-
linear regression model

 Estimation: 
 Maximum likelihood estimation (for more than 2 alternatives)

 Least square regression as regression of log-odd ratio (convenient for 2 
alternatives)

Multi-Alternative Aggregate Logit Model
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 Key point is to set the reference alternative. With respect to the reference 
alternative two types of formulations are possible
 Ratio of common-attributes (e.g. cost, time) format

 Difference of common-attributes (e.g. cost, time) format

 Estimation: either by maximum likelihood or least-square for log-odd ratio
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• XCA-k = the common attributes of C 
and A

• XC-j = the attributes of only C

• XBA-k = the common attributes of B 
and A

• XB-j = the attributes of only B

Aggregate Logit Model with Capturing Competition



 Elasticity of substitution of a variable between an alternative (B,C) 
against the reference alternative (A)

 Elasticity of substitution between two non-reference alternatives (B and C)

 Such elasticity measure is problematic as there no consistent measurement of 
elasticity when attributes of both non-reference alternative change

 Elasticity of substitution depends on reference alternative

Aggregate Logit Model with Capturing Competition
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 Elasticity of substitution between two non-reference alternatives (B and C)

 Such elasticity measure is also problematic as there no consistent 
measurement of elasticity when attributes of both non-reference alternative 
change

khandker.nurulhabib@utoronto.ca 26

0)(&0)()(

0)(&0)()(









BcCCACB

BcBBACB

xdxdifxE

xdxdifxE





Aggregate Logit Model for Capturing Competition



 Translog demand system model specifies indirect utility (generalized cost), V
function of a demand generation process

 Once specified 
 Total quantity demand for alternative j, xj

* is estimated 
by applying Roy’s Identity,

 Finally the demand share of alternative j, Pi(j)

Total Demand & Market Segmentation: Translog Model
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 Modelling demands for making trips of j destinations

 Assumed that observed demand for alternative j by individual i has, xij* has 
randomness and so follows a distribution

 Use Poisson or Lognormal regression model 

Empirical Example: Translog Model
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making a trip

• i is the individual
• j, k = 1, 2, 3,4, are the 
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Translog Model Provides Superior Specification
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 Trip generation to alternative 
destinations (j and k) by an 
individual (i) at varying substitution 
scenarios that can be captured by a 
TransLog model:
 A zero interaction coefficient (βjk=0) 

indicates no substitution 
(independent demands)

 A negative interaction coefficient 
(βjk<0) indicates an increase in Trips 
demand to j at the expense of those 
to k

 A positive interaction coefficient 
(βjk>0) indicates complementary 
relationship



 Translog demand system model  is based on microeconomic principle of 
utility maximization

 Substitution patterns between choice alternatives can be accommodate 
flexibly

 Model can be estimated by using least-square estimation method or 
maximum likelihood estimation technique

Market Segmentation: Translog Model
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 Predicting changes in total demands:

 Tt is the total demand after change of x at time t (e.g. transit ridership at 
time t)

 Tt-1 is the total demand before change of x (e.g. transit ridership time t-1)
 xt is the attribute after change at time t (e.g. transit fare at time t)
 xt-1 is the attribute before change at time t (e.g. previous transit fare)

 Elasticity of demand (E) needs to be known and a fixed value
 Useful for short term analysis when the expectation of ‘no big change in 

behaviour’ is valid

Predicting Incremental Changes: Elasticity-based Model
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 Example of typical functional forms of total demand and corresponding 
elasticity:

Predicting Incremental Changes: Elasticity-based Model
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 P/(j) is probability/proportion of choosing j after change in systematic utility v0
j

 P0(j) is probability/proportion of choosing j before change
 vj is the systematic utility function after change 
 v0

j is the systematic utility before change 

 Systematic utility function needs to be known and pre-defined
 Considers that preference structure and competition do not change

Predicting Incremental Changes: Pivot-Point Model
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 Aggregate models are often very useful:

 When quick estimation of changes in necessary

 Lack of detailed micro data for disaggregate modelling

 Forecasting scenario analysis without precise specification of scenario 
contexts

 Aggregate and Disaggregate models are complementary:

 Should not be considered either or

Aggregate Demand models
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Thank You
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